ASSESSMENT REPORT

Prospecting Survey

On the

CRESCENT PROJECT

Nelson Mining Division

Latitude: 49° 27' 35" N; Longitude: 117° 35' 34" W NTS 082F05; BCGS 082F042, 082F043

For

NORTH BAY RESOURCES INC.
PO Box 162
Skippack Pennsylvania
19474
USA

By

Dan V. Oancea PGeo April 19, 2013

TABLE OF CONTENTS

1. Summary	Page 3
2. Conclusions	Page 3
3. Recommendations	Page 4
4. Introduction	Page 4
4.1 Location, Access and Physiography	Page 4
4.2 Mineral Claims	Page 4
4.3 Climate, Local Resources, Infrastructure	Page 5
4.4 History and Development	Page 5
5. Geology and Mineralization	Page 6
6. Prospecting Survey	
7. Discussion and Conclusions	Page 8
8. Recommended Work	Page 10
9. Cost Statement	Page 11
10. References	Page 12
11. Statement of Qualifications	Page 13
	After page 3
Tigute 5 Trook Sumpring Flup	man free page /
LIST OF TABLES	
Table 1 – Mineral Titles.	Page 5
PICTURES	
	LIST OF FIGURES Index Map
APPENDICES	
Appendix 1 – ALS Chemex Analytical Certificates & Chemical Proce	edures
TT	

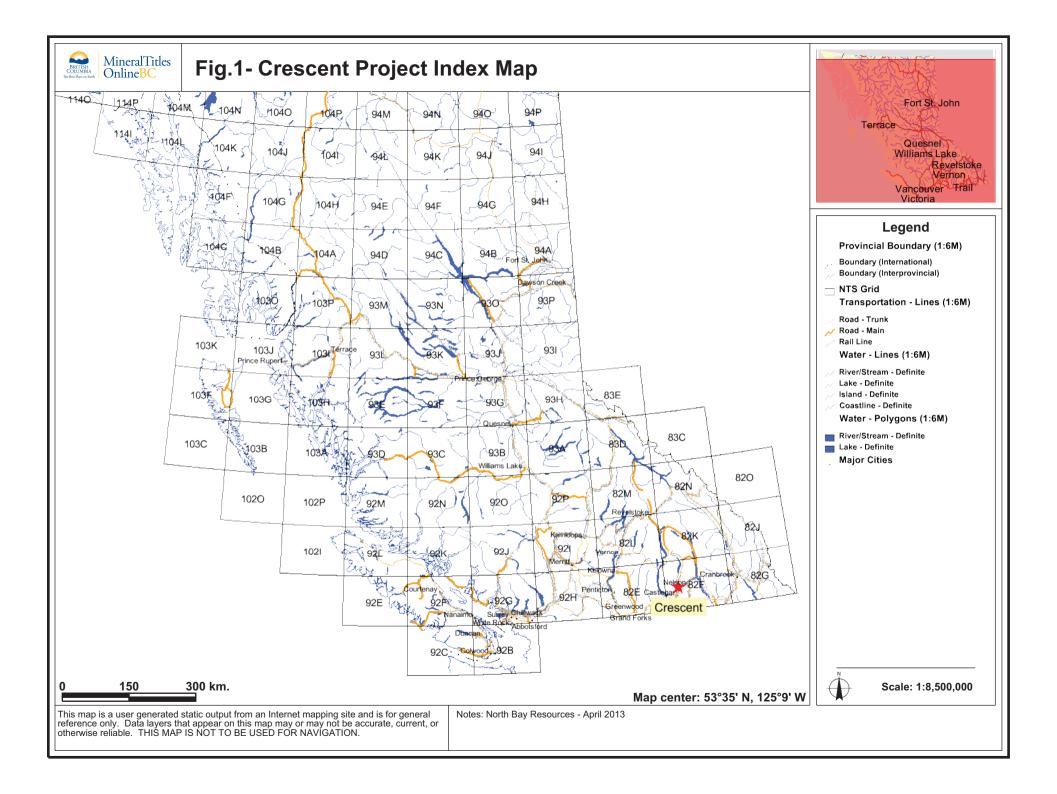
1. Summary

The Crescent mineral project is located near the community of Krestova, 24 km west of Nelson in southeastern British Columbia, Canada. The property is 3 km west of the community of Crescent Valley and is road accessible. The mineral project is 100% owned by North Bay Resources Inc.

The 377.92 hectares (933.86 acres) mineral claims cover niobium-tantalum-rare earth (REE) occurrences in pegmatite syenite rocks of Eocene age that intrude Castelgar gneissic rocks. The niobium-tantalum-REE mineralization is associated with niobian rutile and samarskite minerals.

Historic exploration of the Crescent showing returned assays up to 25.7% niobium and 9.8% tantalum.

A one day prospecting survey was undertaken in April 2013. It resulted in the identification of niobium-tantalum-REE mineralization hosted in pegmatite and syenite rocks at a new location. Limited sampling returned assays up to 64.8 ppm Nb2O5.


2. Conclusions

The 2013 Crescent prospecting survey succeeded in validating the rock types and mineralization described in previous assessment reports.

The reconnaissance and prospecting survey identified new mineralized outcrops therefore expanding the known mineralized area. The area that had been sampled consists of concentrations of quartz pods and large potassium feldspar crystals that host the niobium-tantalum-REE mineralization - the zone is about 30 m wide and open in both directions. The results of the 2013 survey as well as information from older assessment reports showed that the same type of mineralization was identified in gneissic country rocks north of the Crescent showing. This proves that mineralization occurs over a larger area than previously thought.

The type of mineralization occurring at Crescent (i.e. high zirconium, yttrium, niobium and REE but less tantalum) is also characteristic for alkaline to peralkaline granites and syenites. Many of these types of occurrences are flat-lying and some of them don't even outcrop.

A geomorphologic analysis of the mineral claims area indicate that the hill that hosts the Crescent showing represents a weathering resistant intrusion which is prospective to host more niobium-tantalum-REE mineralization.

3. Recommendations

Prospecting, mapping and a radiometric survey should be employed to identify anomalous zones and further define their extent. Trenching and shallow drilling would be used in anomalous areas to obtain further geological information and grades.

4. Introduction

4.1 Location, Access and Physiography

The Crescent mineral property is located in south eastern British Columbia in the Nelson Mining Division, some 24 km west of Nelson. The property is 3 km west of the small unincorporated community of Crescent Valley, which is located on the provincial Highway 6. A paved road crosses the eastern side of the property.

The project is located west of the Slocan River and south of the Valhalla Provincial Park.

Nelson is the seat of the regional district of Central Kootenay. The city of Castelgar located 24 km south west of Crescent is the West Kootenay's commercial service center and the closest airport. Both cities are appropriate bases for exploration programmes.

Elevations range from 600 m near the Slocan River to 1,100 m in the western part of the property. Second growth fir and pine trees cover the claims with the exception of the hill (850 masl) that hosts the Crescent prospect which is largely barren.

Abundant water supply exists on the claims including the Langill, Sher and Dermid creeks.

4.2 Mineral Claims

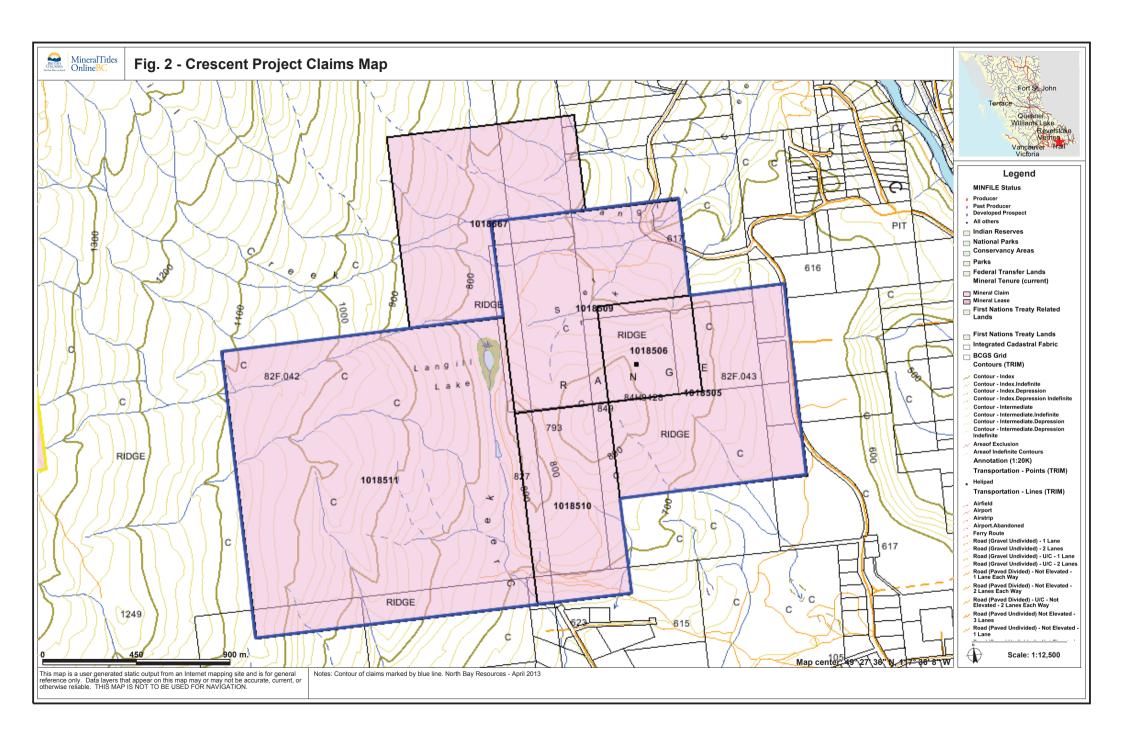
The Crescent mineral project consists of 5 mineral tenures that cover 377.92 ha (933.86 acres). The claims are 100% owned by North Bay Resources Inc. and are centered at 49° 27' 35 N and 117° 35 34 W. The mineral property is part of the NTS 082F05 and BCGS 082F042, BCGS 082F043 maps.

TABLE 1: MINERAL TITLES AT THE CRESCENT PROJECT

Tenure Number	Claim Name	Owner	BCGS Map Number	Good to Date	Status	Area (ha)		
1018505	Crescent 1	204090	082F043	April 17, 2016	Good	62.99		
1018506	018506 Crescent		18506 Crescent		082F043	April 17, 2018	Good	20.99
1018509	Crescent REE	204090	082F043 & 082F044	April 17, 2016	Good	62.98		
1018510	018510 Crescent SW				082F043 & 082F044	April 17, 2016	Good	41.99
1018511	Crescent W	204090	082F042	January 26, 2015	Good	188.97		
TOTAL						377.92		

4.3 Climate, Local Resources, Infrastructure

Climate is typical of B.C. interior mountainous areas: moderate with warm summers, cold winters and moderate precipitation.


Snow covers higher elevations starting with October.

Infrastructure is good: Highway 6 follows the eastern shore of Slocan Lake and connects the communities of Slocan, Silverton and New Denver with Nelson and Trail.

Accommodation, food and gas could be provided and sourced from any of these communities. Power and water are readily available.

4.4 History and Development

The Crescent mineralization was recognized in 1956 as a result of prospecting for uranium in the Cold War Era. A chunk of samarskite collected from a mineralized area returned 25.7 per cent niobium, 9.8 per cent tantalum, 5.8 per cent uranium and 2.5 per cent thorium (Minister of Mines Annual Report 1956).

In 1967, another Crescent sample assayed 2.2 per cent niobium, 0.32 per cent yttrium and 0.14 per cent uranium (Metcalfe, 1967)

Active Minerals Exploration Ltd. investigated the Crescent area in 1985. Rock and soil samples were collected and assays returned values up to 1.25 per cent Nb2O5 and 0.14 per cent Ta2O5. (AR14652)

5. Geology and Mineralization

Gneiss and augen gneiss of the Castlegar gneiss complex, of unknown age, are intruded by a Middle Eocene Coryell syenite stock. Greisen and pegmatite zones occur in a cupola of the syenite. (Minfile 082FSW272)

Two of the larger quartzose pegmatite-greisen zones, 300 metres apart, measure 20 by 30 metres and 8 by 30 metres. They consist predominantly of coarse-grained feldspar with minor quartz and muscovite and contain niobium-tantalum oxide minerals. The black radioactive minerals are likely samarskite and ilmenorutile or niobium rutile. They occur as disseminations in reddish feldspar and patches up to 5 centimetres across. It was proposed that mineralization hosted by pegmatititic/greisens zones is a result of a magmatic differentiation process of the parent syenitic magma. (Minfile 082FSW272)

Rocks underlying the northern part of the claims consist of quartz monzonites which contain pegmatites as well as pegmatitic lenses, sills and veins which are generally conformable with foliation. They also carry the same type of niobium-tantalum-REE mineralization. (AR26855)

6. Prospecting Survey

A one day reconnaissance survey was undertaken in April 2013 on the Crescent mineral claims held by North Bay Resources Inc.

The scope of the survey was limited to validating the rock types and mineralization described in previous assessment reports and to assess the prospectivity of the claims.

A quartz monzonite rock grading to gneissic rock consisting of potassium feldspar, biotite, hornblende and quartz was recognized in the northern part of the property.

The syenite intrusion that hosts the Crescent mineralization was encountered at 750m in elevation. It represents a distinct topographic feature marked by bluffs that are part of a larger circular knob. The rock is made of coarse grained feldspar with minor quartz. It sometimes contains blocks of country rock gneiss as xenoliths. Pods of quartz are also visible in the syenite rock. The syenite rock is sometimes

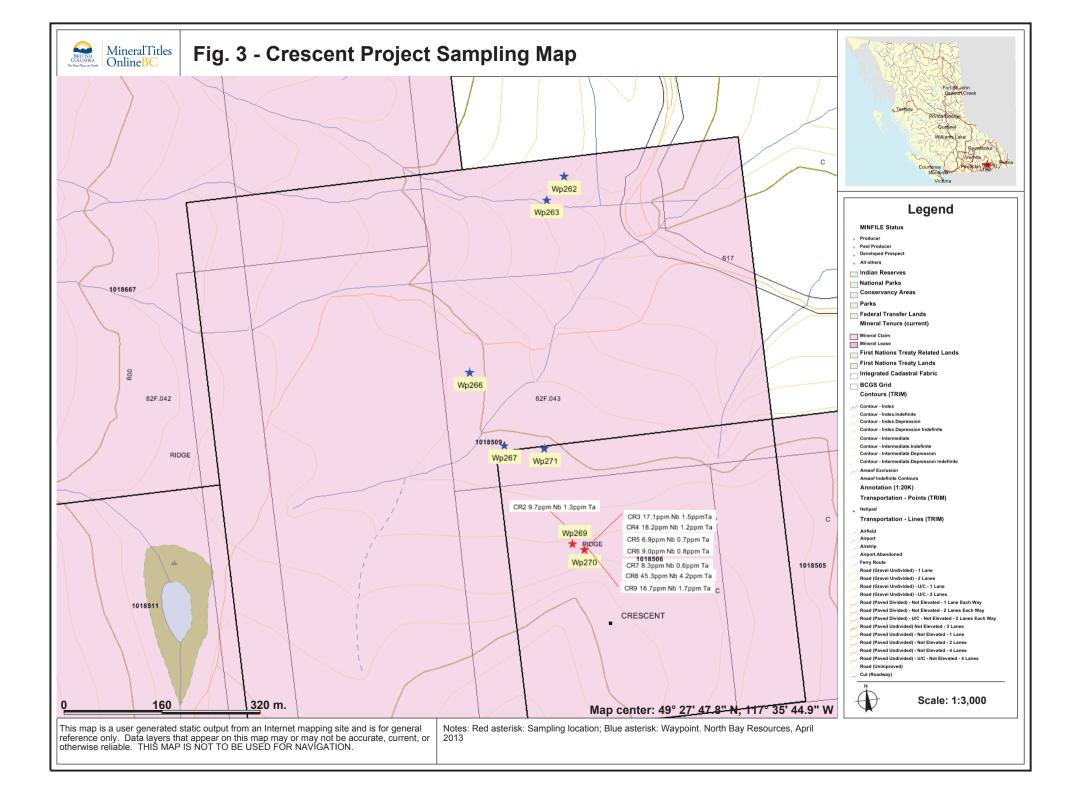

hydrothermally altered and displays a greenish tinge. At times the rock is silicified when in contact with dark grey microcrystalline quartz. Grey nepheline minerals have been tentatively identified in the syenite as well.

Plate 1: Samarskite mineralization in potassium feldspar

The visible niobium-tantalum-REE mineralization is mostly represented by brown/rusty spots that are sometimes surrounding black minerals (halo). They are hosted by both large potassium feldspar crystals and massive white quartz veins/pods that cut or are hosted by the syenite rock. The same type of mineralization has also been identified in the gneissic country rock that had been intruded by the syenite stocks.

Eight grab samples were collected from material lying at the base of the cliffs (detached from the face of the rock) over a 30 m distance. Most of them represented the contact between syenite rock sometimes altered (greenish tinge) and reddish brown spotted potassium feldspar and massive quartz. Samples assayed as high as 45.3 ppm niobium (equivalent to 64.8 ppm Nb2O5), 19.7 ppm yttrium, 35.9 ppm uranium and 34.1 ppm thorium. Rare earth elements were also present albeit in smaller amounts in all samples.

7. Discussion and Conclusions

The April 2013 reconnaissance and prospecting survey identified new mineralized outcrops at 750 masl therefore expanding the known mineralized area - the Crescent showing is recorded at 780 masl and at a distance of over 100 m from the aforementioned outcrops.

The outcrops of syenite that have been studied present the same mineralogical associations and the same type of mineralization as the ones described as occurring at the Crescent showing.

Plate 2: Altered gneissic rock displaying brown spots indicative of mineralization

While 2013 grades were lower than those previously found at the Crescent showing it is readily apparent that larger parts of the syenite intrusion are carrying niobium-tantalum-REE mineralization than previously thought, a fact which has important implications for the prospectivity of the mineral claims.

It is to be noted that the same type of mineralization was also encountered in the gneissic country rock north of the syenite intrusion (AR26855 and the 2013 survey) which means that exploration work has to be carried out in that area as well.

A geomorphologic analysis of the topography of the claims area indicates that the Crescent hill stands out as a circular feature/knob that was not eroded away by the abrasive action of glaciers or by weathering processes. Even though the hill was not mapped in 2013 it can be presumed that it most likely represents the syenite intrusion - the top of which is rich in accumulations of quartz pods (and possible associated mineralization) which makes it weathering resistant.

This possible extensive niobium-tantalum-REE-uranium-thorium mineralization of unknown grades, which is presumed existent over large areas in the syenite body, may have contributed to the lack of vegetation on the top of the hill. To be remembered that barren mountain sides usually occur at higher elevations - the Crescent hill is only 849 masl. Vegetation could also lack on rocks that do not permit the formation of proto-soils because of the lack of decomposing minerals, which is not the case at Crescent as feldspars are an abundant rock forming mineral and easy to weather. Therefore the hypothesis that chemical elements from the country rock impede the development of vegetation on the Crescent hill has also to be taken into consideration.

An analysis (linears, creeks and vegetation) of Google Earth pictures indicates that the 1018511 mineral tenure could host syenites as well, which means that they might also be considered prospective for hosting niobium-tantalum-REE mineralization.

If the pegmatitic classification of the niobium-tantalum-REE mineralization is valid then there is the distinct possibility that some of the mineralized pegmatites occur as flat-lying bodies i.e. they do not outcrop and could be identified only by drilling.

Due to the general association of this type of mineralization with radioactive minerals containing uranium and thorium the radiometric method of prospecting is considered to be effective in the identification and delineation of higher grade mineralized zones.

A separate note has to be made as to the classification of mineralization. According to the British Geological Survey (BGS) the type of mineralization which contains high zirconium, yttrium, niobium and REE but less tantalum is usually associated with alkaline to peralkaline granites and syenites and not with pegmatites. Niobium mineralization associated with granites and pegmatites of the LCT type (lithium, caesium, tantalum) contains tantalum grades higher than niobium grades.

Therefore according to this classification the Crescent mineralization could be associated with alkaline syenites rather than pegmatites which opens the possibility that mineralization is more extensive than previously considered as it is not restricted to the 'pegmatitic' zones anymore.

An example of an alkaline syenitic complex that hosts a similar type of mineralization could be found in south-west Greenland namely the Illimaussaq and Matzfeldt

complexes – their richer layers average 0.1 per cent niobium. Hydrothermal veins also occur in both syenites and country rocks and they host niobium-tantalum-REE pyrochlore mineralization and significant uranium-niobium mineralization (BGS).

8. Recommended Work

The Crescent mineral claims should be surveyed in detail, prospected, mapped and sampled. A radiometric survey is considered useful, to be employed to help in finding and delineating high mineralized zones. Due to high rock hardness rock saws should be employed in executing channel sampling. As the geological knowledge increases a better understanding of the style of mineralization (pegmatite vs. alkaline syenites) would help in guiding the exploration process. Drilling should be carried to a certain depth that would permit the intersection of other inferred mineralized flat-lying structures.

9. Cost Statement

Dan Oancea PGeo:

Salary

-	1 Day Fieldwork @\$500/day	\$500.0
-	2 Days Mob/Demob @ \$500	\$1,000.0

Report Writing

- 1 Day @500/day \$500.0

Accommodation

- 2 Days @ \$100/day \$200.0

Food

- 3 Days @\$50/day \$150.0

Auto

- 1,570km @ \$0.55/km \$863.7

Assays \$321.3

TOTAL \$3,535.0

10. References

- 1. Assessment Reports 14652, 26855
- 2. British Geological Survey (BGS): Niobium-Tantalum, April 2011
- 3. B.C. Minister of Mines Annual Report 1956, p.77
- 4. Metcalfe S. (1967): Assays of the M.C. claims in the Uranium Commodity File
- 5. Minfile 082FSW272

11. Statement of Qualifications

- I, **Dan V. Oancea**, of 12-330 Angela Drive, Port Moody, do hereby certify that:
- 1. I am a registered Professional Geoscientist in the Province of British Columbia, Canada and a Fellow of the Geological Association of Canada.
- 2. I have a B.Sc. degree in Geological Engineering and Geophysics from Babes-Bolyai University of Cluj-Napoca, Romania, which I graduated in 1987.
- 3. I have practiced my profession for over 13 years.
- 4. As a result of my experience and qualification I am a Qualified Person as defined in National Instrument 43-101.
- 5. I have authored this report which is based upon review and compilation of data relating to Crescent mineral property and upon personal knowledge of the property gained from on-site survey work carried out in April 15, 2013.
- 6. I do not own interest in the Crescent mineral property.

Vancouver, Respectfully submitted

April 19, 2013 Dan V. Oancea PGeo

Table 2 – Crescent Sample Locations

Station No.	Sample No.	UTM E*	UTM N*	Sample/Outcrop Description**
Wp 262	-	457060	5479464	Granitic gneiss float
Wp 263	-	457027	5479429	Q monzonite grading to gneiss outcrop
Wp 266	-	456867	5479166	Subcrop of megacrystic Q monzonite
Wp 267	-	456908	5479041	Q monzonite floats
Wp 269	CR2	456998	5478868	Description below
Wp 270	CR3 to CR9	457016	5478856	Description below
Wp 271	-	456972	5479028	Gneiss with fpar carrying reddish Nb mineralization (samarskite)

^{*}UTM Zone 11 NAD83

^{**}All samples are grab samples

Sample Description

- **CR-2:** Contact between hydrothermally altered greenish syenite and pink K-fpar + massive Q. Mineralization occurs as brown spots in both Q & fpar.
- **CR-3:** Contact between greenish (possible nepheline) syenite and pink K-fpar + Q. Mineralization as brown spots in both Q & fpar.
- **CR-4:** Gneiss (K-fpar, biotite, hornblende, Q) slightly mineralized (visible little brown spots typical of mineralization).
- **CR-5:** Syenite cut by small fissures filled with K-fpar and Q. Mineralization as brown spots in both Q & fpar.
- **CR-6:** Syenite silicified and spotted with the brown spots indicative of mineralization. Possible grey nepheline.
- **CR-7:** Greenish syenite rock (megacrystic K-fpar) cross cut by mm thick veinlets. It displays very few brown spots.
- **CR-8:** Greenish syenite rock in contact with pink K-fpar + possible nepheline. Feldspars hosts mineralization in visible brown spots.
- **CR-9:** White massive Q in contact with fissured pink K-fpar that displays visible black oxide mineralization (samarskite) surrounded by a reddish halo (Plate 1).

GEOCHEMICAL PROCEDURE

ME- MS81

ULTRA-TRACE LEVEL METHODS

SAMPLE DECOMPOSITION

Lithium Metaborate Fusion (FUS-LI01)

ANALYTICAL METHOD

Inductively Coupled Plasma - Mass Spectroscopy (ICP - MS)

A prepared sample (0.200 g) is added to lithium metaborate flux (0.90 g), mixed well and fused in a furnace at 1000° C. The resulting melt is then cooled and dissolved in 100 mL of $4\% \text{ HNO3} / 2\% \text{ HCl}_{3}$ solution. This solution is then analyzed by inductively coupled plasma - mass spectrometry.

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver*	Ag	ppm	1	1000
Barium	Ва	ppm	0.5	10000
Cerium	Се	ppm	0.5	10000
Cobalt*	Со	ppm	0.5	10000
Chromium	Cr	ppm	10	10000
Cesium	Cs	ppm	0.01	10000
Copper*	Cu	ppm	5	10000
Dysprosium	Dy	ppm	0.05	1000
Erbium	Er	ppm	0.03	1000
Europium	Eu	ppm	0.03	1000
Gallium	Ga	ppm	0.1	1000
Gadolinium	Gd	ppm	0.05	1000
Hafnium	Hf	ppm	0.2	10000
Holmium	Но	ppm	0.01	1000
Lanthanum	La	ppm	0.5	10000
Lutetium	Lu	ppm	0.01	1000
Molybdenum*	Мо	ppm	2	10000

REVISION 05.00 FEB 26, 2009 WWW.ALSGLOBAL.COM

ME- MS81

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Niobium	Nb	ppm	0.2	10000
Neodymium	Nd	ppm	0.1	10000
Nickel*	Ni	ppm	5	10000
Lead*	Pb	ppm	5	10000
Praseodymium	Рг	ppm	0.03	1000
Rubidium	Rb	ppm	0.2	10000
Samarium	Sm	ppm	0.03	1000
Tin	Sn	ppm	1	10000
Strontium	Sr	ppm	0.1	10000
Tantalum	Та	ppm	0.1	10000
Terbium	Tb	ppm	0.01	1000
Thorium	Th	ppm	0.05	1000
Thallium	TI	ppm	0.5	1000
Thulium	Tm	ppm	0.01	1000
Uranium	U	ppm	0.05	1000
Vanadium	V	ppm	5	10000
Tungsten	W	ppm	1	10000
Yttrium	Υ	ppm	0.5	10000
Ytterbium	Yb	ppm	0.03	1000
Zinc*	Zn	ppm	5	10000
Zirconium	Zr	ppm	2	10000

^{*}NOTE: Some base metal oxides and sulfides may not be completely decomposed by the lithium borate fusion. Results for Ag, Co, Cu, Mo, Ni, Pb, and Zn will not likely be quantitative by this method.

REVISION 05.00 FEB 26, 2009 WWW.ALSGLOBAL.COM

ME- MS81

Adding Base Metals – ME- AQ81, ME- 4ACD81

SAMPLE DECOMPOSITION

Aqua Regia (GEO-AR01) or 4-acid (GEO-4ACID)

ANALYTICAL METHOD

Inductively Coupled Plasma - Atomic Emission spectroscopy (ICP - AES)

The lithium metaborate fusion is not the preferred method for the determination of base metals. Many sulfides and some metal oxides are only partially decomposed by the borate fusion and some elements such as cadmium and zinc can be volatilized.

Base metals can be reported with ME-MS81 for either an aqua regia digestion (ME- AQ81) or a four acid digestion (ME- 4ACD81). The four acid digestion is preferred when the targets include more resistive mineralization such as that associated with nickel and cobalt

ELEMENT	SYMBOL	UNITS	LOWER LIMIT	UPPER LIMIT
Silver	Ag	ppm	0.5	100
Arsenic	As	ppm	5	10000
Cadmium	Cd	ppm	0.5	10000
Cobalt	Со	ppm	1	10000
Copper	Cu	ppm	1	10000
Mercury**	Нд	ppm	1	10000
Molybdenum	Мо	ppm	1	10000
Nickel	Ni	ppm	1	10000
Lead	Pb	ppm	1	10000
Zinc	Zn	ppm	2	10000

^{**}Hg is only offered with the aqua regia digestion.

REVISION 05.00 FEB 26, 2009 WWW.ALSGLOBAL.COM

Minerals

4977 Energy Way Reno NV 89502 Phone: 775 356 5

Phone: 775 356 5395 Fax: 775 355 0179 www.alsglobal.com

To: NORTH BAY RESOURCES 2120 BETHEL ROAD LANSDALE PA 19446

INVOICE	NIIMRED	2890313	
IIA A OICE	14 O M D L V	2030313	

BILLING INFORMATION Certificate: VA13069449 Sample Type: Rock **NORBAY** Account: Date: 25- APR- 2013 Proiect: Crescent P.O. No.: Ouote: **Due on Receipt** Terms: C3 Comments:

	ANAL'	YSED FOR	UNIT	
QUANTITY	CODE -	DESCRIPTION	PRICE	TOTAL
1	BAT- 01	Administration Fee	26.45	26.45
8	PREP- 31	Crush, Split, Pulverize	7.20	57.60
1.78	PREP- 31	Weight Charge (kg) - Crush, Split, Pulverize	0.70	1.25
8	ME- MS81	Lithium Borate Fusion ICP- MS	29.50	236.00

SUBTOTAL (USD) \$ 321.30

TOTAL PAYABLE (USD) \$ 321.30

NORTH BAY RESOURCES

ATTN: PERRY LEOPOLD 2120 BETHEL ROAD LANSDALE PA 19446

Payment may be made by: Check or Bank Transfer

ALS USA Inc. Beneficiary Name: Royal Bank of Canada Bank: ROYCCAT2 SWIFT: Vancouver BC CAN Address: 003-00010-4001384 Account: For transfers from USA banks use Intermediate Bank Intermediary Bank: JP Morgan Chase Bank Intermediary Address: New York, NY, USA ABA: 021000021 Intermediary Routing:

Please Remit Payments To:
ALS USA Inc
4977 Energy Way
Reno NV 89502

ALS USA Inc.

4977 Energy Way Reno NV 89502

Phone: 775 356 5395 Fax: 775 355 0179 www.alsglobal.com

To: NORTH BAY RESOURCES 2120 BETHEL ROAD LANSDALE PA 19446 Page: 1 Finalized Date: 25- APR- 2013 This copy reported on 26- APR- 2013 Account: NORBAY

CERTIFICATE VA13069449

Project: Crescent

P.O. No.:

This report is for 8 Rock samples submitted to our lab in Vancouver, BC, Canada on 17- APR- 2013.

The following have access to data associated with this certificate:

PERRY LEOPOLD DAN OANCEA

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
LOG- 22	Sample login - Rcd w/o BarCode
CRU- 31	Fine crushing - 70% < 2mm
SPL- 21	Split sample - riffle splitter
PUL- 31	Pulverize split to 85% < 75 um

ALS CODE	DESCRIPTION	INSTRUMENT
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS

TO: NORTH BAY RESOURCES ATTN: DAN OANCEA 2120 BETHEL ROAD LANSDALE PA 19446

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

CR9

ALS USA Inc.

4977 Energy Way Reno NV 89502

64.8

0.40

5.9

Phone: 775 356 5395 Fax: 775 355 0179 www.alsglobal.com

40

1.24

To: NORTH BAY RESOURCES 2120 BETHEL ROAD LANSDALE PA 19446

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- APR- 2013 Account: NORBAY

0.14

16.7

CERTIFICATE OF ANALYSIS VA13069449

1.0

0.38

2.7

Project: Crescent

0.09

10.9

1.33

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME- MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2
CR2		0.48	493	11.3	30	2.02	1.26	0.77	0.33	15.9	1.33	2.6	0.27	5.6	0.15	9.7
CR3		0.56	758	39.0	20	2.55	2.21	1.14	0.74	20.0	2.63	3.3	0.42	19.6	0.15	17.1
CR4		0.28	1665	71.2	10	1.43	2.85	1.18	1.47	23.0	4.36	3.2	0.50	35.7	0.10	18.2
CR5		0.28	904	38.2	20	1.67	1.75	0.92	0.78	20.7	2.22	3.8	0.34	20.7	0.13	6.9
CR6		0.22	387	15.7	30	1.72	1.32	0.67	0.41	22.2	1.57	3.1	0.25	7.4	0.09	9.0
CR7		0.10	675	35.5	20	3.16	2.67	1.77	0.89	27.6	2.94	3.1	0.59	18.1	0.29	8.3
CR8		0.34	176.0	27.7	20	1.46	4.04	2.33	0.44	29.7	3.49	3.1	0.82	9.5	0.34	45.3

1.03

1.79

ALS USA Inc.

4977 Energy Way Reno NV 89502

Phone: 775 356 5395 Fax: 775 355 0179 www.alsglobal.com

To: NORTH BAY RESOURCES 2120 BETHEL ROAD LANSDALE PA 19446 Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- APR- 2013 Account: NORBAY

CERTIFICATE OF ANALYSIS VA13069449

Project: Crescent

	Method Analyte	ME- MS81 Nd	ME- MS81 Pr	ME- MS81 Rb	ME- MS81 Sm	ME- MS81 Sn	ME- MS81 Sr	ME- MS81 Ta	ME- MS81 Tb	ME- MS81 Th	ME- MS81 TI	ME- MS81 Tm	ME- MS81 U	ME- MS81 V	ME- MS81 W	ME- MS81 Y
Sample Description	Units	ppm	ppm	ppm	ppm	ppm										
oumpre Desempnen	LOR	0.1	0.03	0.2	0.03	1	0.1	0.1	0.01	0.05	0.5	0.01	0.05	5	1	0.5
CR2		5.3	1.32	97.6	1.34	2	470	1.3	0.21	20.2	<0.5	0.13	4.20	66	<1	8.9
CR3		15.1	4.13	158.5	3.02	2	454	1.5	0.39	10.85	8.0	0.17	5.38	32	<1	11.8
CR4		28.1	7.87	135.5	5.32	1	691	1.2	0.58	8.55	0.6	0.15	1.39	38	<1	13.4
CR5		14.4	4.11	113.0	2.61	1	451	0.7	0.31	8.88	0.5	0.14	4.04	50	<1	9.6
CR6		6.6	1.80	124.0	1.65	1	390	8.0	0.24	34.1	0.5	0.10	35.9	15	<1	6.4
CR7		14.6	3.92	135.5	3.00	1	633	0.6	0.45	8.16	0.6	0.28	3.88	172	<1	16.5
CR8		9.9	2.58	84.3	3.04	3	314	4.2	0.65	32.7	<0.5	0.35	28.9	88	<1	19.7
CR9		2.5	0.63	89.6	1.03	<1	53.6	1.7	0.29	5.47	< 0.5	0.14	12.05	<5	<1	10.3

ALS USA Inc.

4977 Energy Way Reno NV 89502

Phone: 775 356 5395 Fax: 775 355 0179 www.alsglobal.com

To: NORTH BAY RESOURCES 2120 BETHEL ROAD LANSDALE PA 19446 Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 25- APR- 2013 Account: NORBAY

Project: Crescent

				-				
IIIInera	15				CERTIFICATE	OF ANALYSIS	VA13069449	
Sample Description	Method Analyte Units LOR	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2					
CR2 CR3 CR4 CR5 CR6		0.95 1.04 0.83 0.93 0.66	67 122 130 165 80					
CR7 CR8 CR9		1.85 2.33 0.94	121 89 21					

ALS USA Inc. 4977 Energy Way Reno NV 89502

Phone: 775 356 5395 Fax: 775 355 0179 www.alsglobal.com

To: NORTH BAY RESOURCES 2120 BETHEL ROAD LANSDALE PA 19446

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 25- APR- 2013

Account: NORBAY

Project: Crescent

CERTIFICATE	OF ANALYSIS	VA13069449
	VI ANALLSIS	VA 11/11/17-4-7

		CERTIFICATE COMMENTS							
	LABORATORY ADDRESSES								
	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.								
Applies to Method:	CRU- 31	CRU- QC	LOG- 22	ME- MS81					
	PUL- 31	PUL- QC	SPL- 21	WEI- 21					