Geochemical Report

on the

Pilot Soil / Till Heavy Metal Concentrating Program on the

Brett West Claim

Tenure # 739502

Vernon Mining Division

British Columbia

N.T.S. 082L.022

50° 13' 52" N, 119° 40' 46" W

11U 308913 E, 5567766 N

Owner: North Bay Resources Inc.,

PO Box 162, Skippack,

PA, 19474, USA.

Operator: North Bay Resources Inc.,

Contractor: Billiken Gold Ltd.,

561 Glenmary Road, Enderby,

BC, Canada, V0E 1V3

Author: Eugene A. Dodd, Project Manager

Date: February 24, 2012

Table of Contents

Figures		
Illustrations		
Appendices		
Summary		
Introduction		
Physiography		
Claim Information		
Location and Access		
History of Previous Rel	evant Work in the Area	
Regional Geology		
Property Geology		
Glaciation		
Sampling Method		
Field Observations		
Discussion of Sample N	NB - 60	
Analytical Procedures		
Discussion of Megasco	py	
Assay Results		
ICP Interpretation		
Discussion of Results		
Case Histories		
Conclusions		
Recommendations		
General Discussion		
Statement of Qualificat	ions	
Bibliography		

<u>Figures</u>

Figure 1 – Table of Claim Information	7
Figure 2 – Table of Soil Descriptions	1:
Figure 3 – Table of Microscopic Results	1
Figure 4 – Table of Weights	1
Figure 5 – Brett West Megascopy	1
Figure 6 – Table of Assay Results	2
Figure 7 – Target Model Diagram	2
Illustrations	
Property Location Map	6
Claim Location Map	8
Brett West Sample Location Map	1
A 1°	
<u>Appendices</u>	
Appendix A – Willard D. Tompson Letter Report October 31 2011	3
Appendix B – Willard D. Tompson Megascopy Results	3
Appendix C – Willard D. Tompson ICP	3
Appendix D – Detailed Cost Breakdown	4
Appendix E – Photographs	2
Appendix F – Billiken's HMC Flow Sheet	4
Appendix G – ALS Invoice VA11265555	4
Appendix H – ALS Certificate of Analysis VA11265555	(
Appendix I – ALS Table of Finalized Results VA11265555	6
Appendix J – ALS Fire Assay Procedure	7

Geochemical Report

on the

Pilot Soil / Till Heavy Metal Concentrating Program

on the

Brett West Claim

Vernon M.D.

Bouleau Creek Area, British Columbia

Summary

A total of 10 Soil / Till HMC samples and 2 rock samples were gathered over various roads and trails on the Brett West gold property belonging to North Bay Resources Inc. between October, 12th to 22nd inclusive, 2011. The property is situated about 29 km west of Vernon BC in the North Okanagan. Access is easily gained by two wheel drive vehicle via a series of logging roads that are in relatively good condition. The terrain consists of a moderate to steep south slope occurring along Whiteman Creek. Most parts of the property are easily traversed on foot. First growth timber is mainly mature Pine, Spruce, and Fir. The purpose of this Soil / Till HMC program is to try and locate an economic gold / silver deposit on the property and to delineate target areas worthy of further exploration.

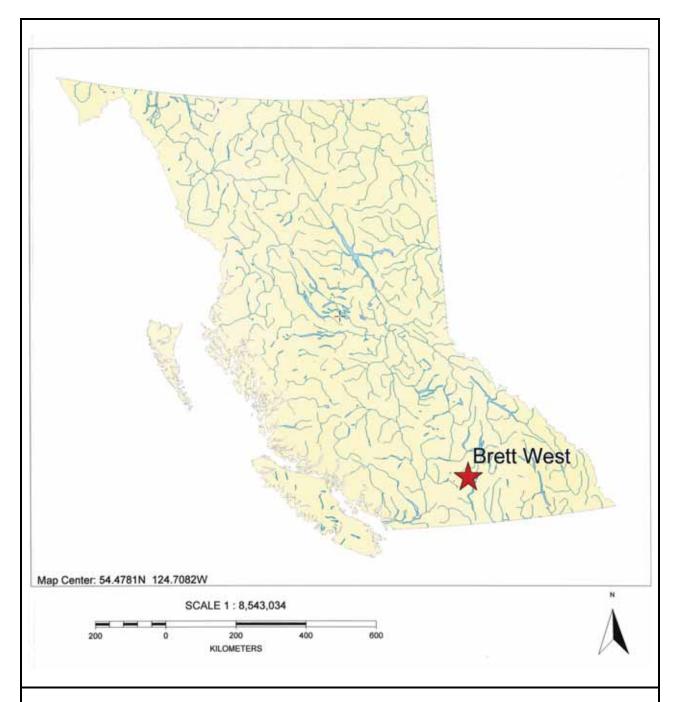
The western part of the property is mainly altered and bleached Tertiary volcanics. One sample, NB-60 yielded some spectacular pristine nuggets of gold.

Introduction

This report summarizes the Pilot Soil / Till Heavy Metal Concentrating (HMC) Program conducted during the months of October and November of 2011 by Billiken Gold Ltd on behalf of North Bay Resources Inc. on their Brett West claim situated near the headwaters of Whiteman Creek in the Vernon Mining Division of British Columbia.

The object of this HMC project is to try and locate an economic gold / silver deposit on North Bay Resources Inc.'s Brett West Property. The project is designed to delineate roughly areas of interest worthy of the high cost of geochemistry, geophysics and or trenching and drilling.

The program was largely successful in delineating two areas of interest to be followed up with further HMC sampling. These two preliminary targets have not been clearly understood. A follow up program will hopefully develop a dispersal plume that can lead to a blind or semi – hidden gold deposit.


Physiography

The Brett West gold property lies at the southeast end of the major physiographic region known as the Thompson Plateau. The claim covers a south slope with a moderate to steep slope occurring along Whiteman Creek.

Elevation on the property varies between 1020 m where Whiteman Creek cuts through the eastern edge of the claim block to about 1428 m at the northeast corner. Most areas can be easily traversed on foot.

The principal water source would be Whiteman Creek which is a year round source with ample water for mining purposes. Most of the claim block is well drained and is transected by several small creeks which would provide enough water for Diamond drilling. The area in general is quite sensitive environmentally as Whiteman Creek drains into Okanagan Lake after cutting through a small section of I.R. # 1 (Okanagan Indian Band).

Most of the claim block is covered with first growth timber generally consisting of mature Pine, Spruce and Fir and varies from close growing immature stands to more widely spaced mature trees.

Property Location Map

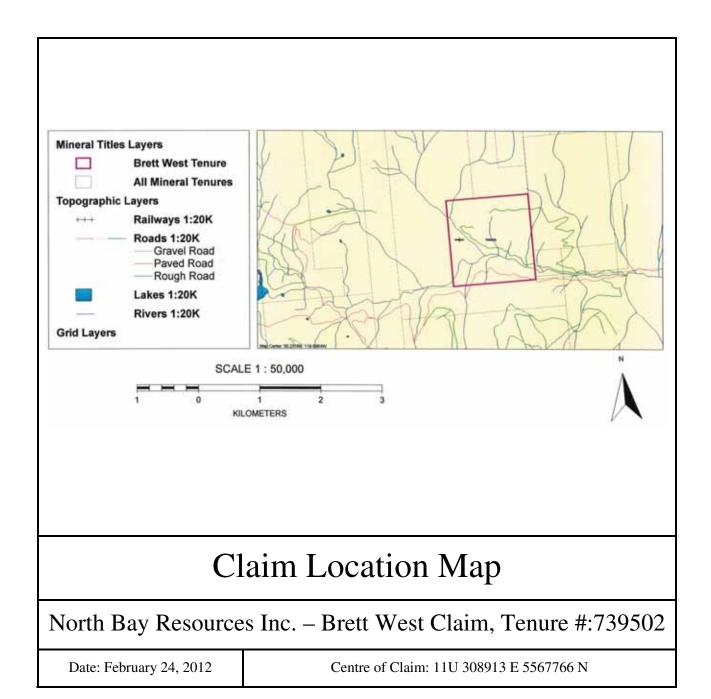
North Bay Resources Inc. – Brett West Claim

Figure 1 - Table of Claim Information

Tenure Number	<u>Type</u>	Claim Name	Good Until	<u>Area</u> (ha)
739502	Mineral	BRETT WEST	20150331	186.02

Claim Information

The property consists of one modified grid claim covering an area of 186.02 ha. The claim is situated within the Vernon Mining Division on NTS Map sheets 082L.022.


The centre of the property is located at approximately 50 ° 13' 52" N, 119 ° 40' 46" W, 11U 308913 E, 5567766 N.

The claim is registered to North Bay Resources Inc. of Skippack, Pennsylvania USA. The property has been maintained by paying cash in lieu of work. This pilot geochemical program is an effort to move the property data base ahead instead of paying cash in lieu of. The above mentioned expiry dates are dependent on this Pilot Soil / Till Heavy Metal Concentrating Program being accepted for assessment work credit.

Location and Access

The property is located in the North Okanagan Valley of British Columbia, Canada approximately 29 km west of the city of Vernon. Access to the property is gained by travelling around the north end of Okanagan Lake on Highway 97 and then down the west side of the lake on Westside Road approximately 19 km where Whiteman Main logging road branches off to the right. After traveling up Whiteman Main about 19 km to the third bridge, a gate on the right marks the start of a trail that transects the southern part of the claim and continues on to the north western corner. These roads are in poor condition but provide access with quads to the central and north western parts of the property.

To gain access to the north eastern part of the property, continue on to the right up the hill after going through the gate. After about 2 km you come to the open cut on the Brett main shear, after continuing on a short distance you come to the northeast corner of the Brett West claim.

History of Previous Relevant Work in the Area

Prior to 1898:

Limited exploration took place on the Klondike gold showings located on Whiteman Creek approximately 4 km west of where it drains into Okanagan Lake. There were also some failed attempts to recover placer gold on Whiteman Creek between 1915 and 1954. Three ounces were reported to have been produced in the late 1930's.

1939:

Alf Brewer discovered gold on what is now the Brett - 1 mineral claim which adjoins the Brett West claim to the east. The Brett Property has since been the subject of some very extensive exploration work in the past 30 years, including soil geochemistry, diamond drilling, R. C. drilling, trenching, underground development and a substantial open cut culminating in a bulk shipment of 291 tonnes to the Cominco smelter at Trail BC in 1996.

Recovery from this bulk sample apparently yielded 27.74 grams Au / ton and 63.7 grams Ag / ton. Recently, the expanded property now owned by Running Fox Resource Corp. has seen minor diamond drilling in the past couple of years. In 2004 a geochemical survey was conducted under the supervision of S. M. Dykes M.Sc., P.Eng., on behalf of Running Fox Resource Corp. This gold geochemical survey covering part of the Brett 5 mineral claim appears to infer the extension of a northeast striking anomalous gold trend onto North Bay's tenure # 733522.

December 07, 1984:

K. L. Daughtry in his ARIS Report # 12,854 in the spring of 1984 Ken Daughtry conducted a small but well focused exploration program on the Gold Star claim which covered the same area as the current Brett West claim. Daughtry collected 5 HMC samples, 6 standard silt samples, 25 soil samples, and 12 rock chip samples. Two of the HMC samples contained highly anomalous amounts of gold. A sample from Whiteman Creek contained 8200 ppb gold. A second sample taken just south of our NB – 60 produced 6400 ppb gold. The source of this gold in Mr. Daughtry's opinion is apparently on the south facing slope of the valley above the sample point. None of the other samples in his program yielded anomalous values.

December 02, 1986:

<u>B. W. Kyba in his ARIS Report # 15,394</u> conducted a geochemical survey over the property (566 soil samples). Weakly anomalous gold values indicated five areas of interest.

January 01, 1989 Boul Claims:

<u>K. L. Daughtry and W. R. Gilmour</u> point out that "much of the property is covered by glacial overburden and that follow up of the soil anomalies will require careful attention to the difficulties inherent in exploration on till covered ground". I think this is relevant to the Brett West claim.

December 30, 1997:

M. S. Morrison B.Sc. in his ARIS Report # 25,600 outlines previous work on the property as;

- 1987 7 D. D. holes (721.5 m)
- 1988 13 km of IP survey
- 1988 15 R. C. percussion drill holes (1,785 m)
- 1988 3 D. D. holes to test IP anomalies. Mr. Morrison's conclusions are "although several of the drill holes on the property intercepted tens of meters of alteration, only one diamond drill hole 88 8 returned any significant gold values (2,150 ppb over 3 meters)".
- 1994 4 D. D. holes (660 m). Completed by Huntington Resources Inc. to test IP and arsenic anomalies. The results of the 4 D. D. holes were the same as previous, lots of alteration but no significant gold values.
- 1996 Southern Gold Resources Ltd. tests the extension of the Brett main shear. A narrow grid was established along the projection of the main shear and 81 soil samples were collected.
- 1997 5 R. C. drill holes were drilled to test the extension of the main shear. The best values in this drill program yielded 25 ppb over 60 meters in hole 97 6. However, Mr. Morrison recommends further drilling to test the Brett main shear at depth.

2005:

S. M. Dykes M.Sc., P.Geo., states on page 6 of ARIS Report # 28,177 dated October 05 2005 that in 1983 Charles Brett encountered significant concentrations of angular gold while panning the subsidiary tributaries of Whiteman Creek and subsequently staked the present (2005) claim group, transferring the claim group to Huntington Resources Inc. the same year.

Mr. Dykes goes on to state "a road constructed into the area uncovered a very strong, steeply dipping, shear zone approximately two meters wide. This is now referred to as the main shear zone. A significant quartz vein (R.W. Vein) was also exposed during road construction. The vein strikes parallel to the main shear about 15 meters to the west. A chip sample from the R.W. Vein assayed 62.9 ppm over a 1.4 meter width (1.84 oz Au / ton over 4.6 feet)".

Regional Geology

A detailed description of the Regional Geology is beyond the scope of the author so a more general description is given here. A lot of excellent work has been performed by very competent geologists, B. N. Church 1981 - 82 for example from which the following abbreviated version has in part been derived.

Okanagan Valley and Okanagan Lake are physical expressions of a major fault system which forms the boundary between the Omineca Tectonic Belt on the east and the Intermontane Belt on the west. The Brett West claim is located near the southeast margin of the Intermontane Belt. This belt of rocks includes Paleozoic and Mesozoic layered rocks which have been intruded by granitic plutons and have been overlain by erosional remnants of Tertiary volcanics and lesser sedimentary rocks of Eocene age. A Syenitic stock on Whiteman Creek is believed to be a feeder for some of the Tertiary volcanics found in the area.

Epithermal gold and silver deposits and several occurrences in tertiary volcanics have been the main focus of much recent exploration. Several significant deposits have been located in this geological setting in the North Okanagan. Near OK Falls: Dusty Mac Au / Ag, NW of OK Falls: The Vault – Au / Ag. One of the more important and significant recent discoveries, the Brett has been the stimulus for a considerable amount of exploration in the Whiteman Creek / Bouleau Lake area for the past 25 years. Exploration is still ongoing in the area by several companies including North Bay Resources Inc.

Property Geology

This property geology is a very brief but adequate description by K. L. Daughtry in his <u>ARIS Report # 12,854.</u>

"The property appears to be underlain by a large hydrothermally altered zone, possibly related to the Tertiary pluton to the east. The Tertiary volcanic rocks and the Jurassic quartz monzonite are intensely fractured, bleached, pyritized, and in places, silicified. The most intense alteration is associated with areas of the most intense fracturing and faulting."

Glaciation

The Whiteman Creek Bouleau Creek area has seen at least four and possibly more periods of glaciation in the last two million years (Dr. Murray A. Roed May 2001). In a discussion with Dr. Roed he has stated that the most recent and important ice movement in the area of Whiteman and Bouleau Creek was definitely north to south.

In <u>ARIS Report # 21,877</u> written for Inco, dated November 1991 Mark Slauenwhite, geologist, indicates that the transport of till in the area was from northwest to southeast. In my discussion with Dr. Roed it was indicated that the movement from northwest to southeast took place about a million years ago therefore it would not have as much relevance as the more recent north to south direction.

Sampling Method

After becoming familiar with the property, roads and trails in areas to be tested are chosen that will give the best and most promising samples. Soil type and availability on different sections of roads and trails can be very important. Some properties are more suited than others for this type of sample program.

The ideal soil condition of course would be undisturbed residual soil; however, it should be kept in mind that soil cover forms the medium or carrier which could contain the particles of gold radiating from a lode deposit. The soil conditions therefore can be less than ideal for the sample program to be successful.

Quads are generally used to gain access and transport the samples. A crew of four men on two quads usually forms the sampling crew. A 20' construction trailer was used to transport the quads and the sampling gear. The trailer with both Quads and all the gear in it could not be left out over night because of thievery and the constant possibility of a heavy snowfall. They were hauled in and out on a daily basis. The program was under threat of heavy snowfall most of the time. On some mornings frozen ground threatened to be a sampling problem on north slopes. Some short flurries and high winds were also experienced. I wouldn't recommend trying to perform soil geochemical work in this area any later in the season.

Step 1 Taking the Sample

To produce a sample, soil is gathered along roads or skid trails by taking a shovel full of the most promising looking soil every 5 to 10 meters or so and placing it into a 30x30x50cm plastic tote bin. The shovelsfull are generally taken as close to bedrock as possible and usually from the high side of the road. Some till covered areas have a small amount of residual soil development immediately above bedrock and this is what we try to sample when possible.

When the tote bin is full, (usually after a traverse of 200m or so depending on soil conditions) the end of the sample interval is marked on the ground and recorded on a tablet with GPS capabilities. To identify the sample bins a piece of flagging is marked with the sample number and dropped into the bottom of the bin before any sample is put in. When the bin is full another piece of numbered flagging is buried in the top of the sample as a further precaution. The sample number is also written on the bin with a permanent type felt pen.

Sometimes a full box of sample is taken all from one location (at a gossan zone or shear zone for example). This sample type we refer to as a **Spot Sample**. A sample taken along a section of road or trail is simply called a **Traverse Sample**.

Step 2 Screening the Bulk Sample

A tote bin of **Bulk Sample** begins processing with a brief description of the soil forming the sample. The remainder of the **Bulk Sample** is then vibrated through a 12.5 mm (1/2 inch) screen to remove any of the larger rocks. This **Plus 12.5 mm** fraction of rocks is discarded after a quick examination for anything of interest (i.e.: mineralization, vein material, alteration etc.). Any rocks of interest are put in a sample bag, labeled with the sample number and set aside for closer examination later. A representative **Soil Sample** is then taken and placed into a wet strength Kraft paper bag, and labeled(i.e.: NB - 35 Soil). This representative **Soil Sample** fraction is cataloged and put into storage for further examination or analysis if desired.

The **Minus 12.5 mm** fraction is then weighed and the weight recorded. At this stage the screened sample (**Minus 12.5 mm fraction**) usually weighs about 35 to 40 kg on average. After each sample is screened

the screen is removed and pressure washed completely clean to avoid cross contamination between samples.

Step 3 Concentrating

The samples are then transported to the nearest small creek and put very slowly through a small sluice box. The sluice box is 21cm wide x 10cm deep and 125cm long (8" wide x 4" deep x 48" long) and is of wood construction lined with aluminum so that it can be completely cleaned out to eliminate cross contamination. The sluice box has been fitted with special rubber matting full of small pockets which are very effective at catching small gold particles. At the head or feed section of the sluice box there is a hopper fitted with a 6.3 mm (1/4 inch) stainless steel screen.

The ideal slope of the sluice box is about 10 to 12 degrees and the volume of water should be about 25 Liters per Minute (LPM). Here again consistency must be maintained between all samples to avoid varied results. The sample is slowly fed through the hopper using the water flow and a small garden shovel to create the slurry. Sluicing the sample has to be done very slowly. It usually takes a good hour to concentrate each sample. After each sample has been sluiced the plastic bin that held the sample is carefully rinsed into the sluice box in case any particles have worked their way to the bottom of the bin during transport.

The slow and careful completion of this and all steps in the concentrating process is crucial to ensure that very small particles of micron gold are not washed away. If for example there are only three small particles of "low transport gold" in an entire sample program one always has to be certain not to lose them by accident or sloppiness once they have been gathered in the field.

As the sample is being worked slowly through the screened hopper on the sluice box a careful watch is kept for vein material, mineralization, alteration etc.in the plus fraction. The **Plus 6.3 mm** fraction from the hopper is placed in a new plastic food container with a soft aluminum tag denoting the sample number and is further marked **Sluice Reject**. The lid is then placed on and duct taped in place to avoid accidental spillage. The lid of the container is then further marked with the sample number and "**Sluice Reject**". A small **Sluice Reject** sub sample is set aside for megascopy at a later date.

After all of the **Minus 12.5 mm** fraction has been put through the sluice box, the sluice concentrate is then rinsed thoroughly and completely out of the box and into a clean container. Pressurized water is used to clean out the sluice box and rubber matting as it must be absolutely clean. At this point, the sluice concentrate is washed through an 850 micron sieve (No. 20 ASTM). The **Plus 850 Micron** fraction is examined, labeled and set aside as **Pan Reject**.

All weights from here on are determined with a Fischer Scientific torsion balance.

The remaining **Minus 850 Micron** fraction is then panned down to 100 to 200 grams. The size depends on how much heavy fraction is layered in the pan. A course fraction (850 Micron) was chosen as we are looking for short transport gold such as that derived from disintegrated vein material.

This initial panning usually takes 1 to 1.5 hours to complete. The panning is done using clean water between each sample in a spotlessly clean plastic tote bin. A couple of drops of detergent are added to the water as a surfactant. The pan reject is thoroughly rinsed from the bin and added to the **Pan Reject** and the **Pan Con** is placed into a clean plastic container labeled with the sample number and "**Pan Con**". A careful watch is kept for particles of gold while this initial panning is taking place but closer inspection comes later.

Step 4 Pan Con Fractioning

This initial **Pan Con** sample is then examined wet under a microscope before being dried and the weight recorded. After being dried and weighed the next step is to remove the magnetic fraction carefully using a sheathed magnet. The **Pan Con Magnetic** fraction is then weighed, labeled and set aside. The remainder of the **Pan Con** is then passed through a 300 micron (Tyler 50 mesh) sieve. The plus fraction is labeled weighed and set aside for microscopy as the **Plus 300 Micron** fraction.

The remaining **Minus 300 Micron** fraction is then re - panned by an experienced and patient panner down to about 20 to 35 grams (It can take up to and sometimes more than an hour to do this careful panning). The panning is done in a thoroughly clean plastic tote bin using fresh clean water. During the re - panning the **Re Pan Reject** is thoroughly rinsed from the bin and then both **Re Pan Reject** and the **Re Pan Con** are thoroughly dried, and set aside. At this time 0.5 grams is removed from the **Re Pan Con** labeled and placed in inventory for further reference or examination if needed.

The **Re Pan Con** fraction is visually inspected for gold particles during the panning and again when panning is completed. Any particles spotted are examined under a Bausch & Lomb microscope and photographed.

Step 5 Analysis

Having reached this point you have nine fractions at the forefront namely:

- Soil Sample (representative 200 to 300 grams)
- Sluice Reject
- Sluice Reject Sub Sample that was sent for megascopic analysis and returned to inventory
- Pan Reject
- Pan Con Magnetic Fraction
- Plus 300 Micron Fraction (Pan Con Non magnetic Fraction)
- Re Pan Reject Fraction
- Re Pan Con Fraction
- O.5 grams of Re Pan Con in inventory

The fractions are photographed and decisions are made as to what analytical methods to proceed with.

Field Observations

One of the great things about this process is that a pretty good evaluation of the sample takes place on the spot, in the field after the first panning. This HMC method gives some results (i.e. visible gold or no visible gold in the field). With the aid of a microscope the colors that you find can be examined closely to determine whether they are low transport gold (pristine particles) or rounded off and hammered placer products. Survey grids and sample sites can be immediately adjusted in the field according to these results as they become available.

If for example, 15 sample intervals have no visible gold in them but the 16th one obviously has low transport gold then efforts can be concentrated uphill or up ice depending on soil type (i.e. residual or glacial till). Typically, more sampling followed by trenching takes place. If a Geochemical survey is chosen, then the grid and sample locations can at least be more wisely placed.

Figure 2 - Table of Soil Descriptions

Sample Number	Description of Plus 12.5 mm
NB - 60	gravelly
NB - 61	grayish brown dirt
NB - 62	brown gravelly 1 to 1+1/2 inch sharp stones
NB - 63	gray till 1 inch round stones
NB - 64	"Rock"
NB - 65	"Rock"
NB - 66	gravelly
NB - 67	gravelly
NB - 68	sandy brown loam
NB - 69	good brown dirt
NB - 70	good nice gray soil
NB - 71	gravelly brown

Figure 3 - Table of Microscopic Results

Sample	Microscopy of Pan Con fraction	Microscopy of Plus 300	Microscopy of Re Pan Con
Number		Micron fraction	fraction
NB - 60	2 pristine nuggets found - 1 larger	No visible gold	2 small roundish nuggets (the 2
	pristine boot shaped, 1 with possible		pristine nuggets found in the pan
	crystallization on one side and		con were kept separate when
	curved striations on the other		found)
NB - 61	No visible gold	No visible gold	No visible gold
NB - 62	No visible gold	No visible gold	No visible gold
NB - 63	No visible gold	No visible gold	No visible gold
NB - 64	No visible gold	No visible gold	No visible gold
NB - 65	No visible gold	No visible gold	No visible gold
NB - 66	No visible gold	No visible gold	No visible gold
NB - 67	No visible gold	No visible gold	No visible gold
NB - 68	No visible gold	No visible gold	No visible gold
NB - 69	No visible gold	2 small specks of	No visible gold
		possible gold?	
NB - 70	No visible gold	No visible gold	No visible gold
NB - 71	No visible gold	No visible gold	No visible gold

Discussion of Sample NB – 60

Two nuggets were found in the **Pan Con** fraction:

- 1 pristine, boot shaped gold nugget with quartz adhered. Approximate size 195 microns x 45 microns
- 1 pristine, metallic nugget "unidentified" (nonmagnetic with crystal structures). Approximate size 145 microns x 60 microns. This nugget acted exactly like gold in the pan and there was virtually no chance that this particle was introduced after the sample was taken or during the sample processing.

Two nuggets were found in the **Re Pan Con** fraction:

• 2 semi - angular, gold nuggets with quartz adhered. Approximate size of each 60 microns.

Figure 4 – Table of Weights

Sample Number	Minus 12.5 mm fraction weight (kilograms)	Pan Con weight (grams)	Pan Con Magnetic fraction weight (grams)	Plus 300 Micron fraction weight (grams)	Re Pan Reject fraction weight (grams)	Re Pan Con fraction weight (grams)
NB - 60	8	112	25	11	50	27
NB - 61	36	67	15	10	23	20
NB - 62	36	104	23	18	41	22
NB - 63	41	105	25	25	31	25
NB - 64	"Rock"	"Rock"	"Rock"	"Rock"	"Rock"	"Rock"
NB - 65	"Rock"	"Rock"	"Rock"	"Rock"	"Rock"	"Rock"
NB - 66	5	50	2	7	19	24
NB - 67	6	64	9	11	21	23
NB - 68	34	87	12	17	40	18
NB - 69	32	57	12	13	11	22
NB - 70	31	57	17	12	7	20
NB - 71	32	82	25	8	22	27

Analytical Procedures

Samples were first pulverized to 85% passing 75 microns or better. Au values were determined by fire assay with A.A. finish. Samples were then analyzed for 35 elements by Aqua Regia Digestion – ICP – AES. Performed by ALS Canada Ltd. in Vancouver, British Columbia. Appendices G through I contain the following; invoice, Certificate of Analysis, and finalized results table.

Discussion of Megascopy

Mr. Willard D. Tompson P.Geo., completed megascopic examination of the selected Sluice Reject samples as they contain important information about both the composition of the bulk HMC samples and their origins. However, it is beyond the scope of this report to interpret the meaning of these observations. Prior to any further exploration programs this megascopic information should be fully understood and considered. Mr. Tompson P.Geo., did a very careful and thorough examination of these samples and has presented some detailed and very useful descriptions.

The following table (Figure 3) is extracted from the <u>Report of Megascopic Examination Sluice Reject Samples</u>, Whiteman Creek – Bouleau Area, Vernon Mining Division, British Columbia by Mr. Willard D. Tompson P.Geo.,. The entire original document is in Appendix B.

Figure 5 – Brett West Megascopy

Sample Number	Megascopic - Description of Rock
NB – 60	All rocks are angular and from size 1/8" to 1". Larger than most of the samples. About 1/4 of the grains are granite and granodiorite. The remainder are light colored felsic volcanic lavas and are probably dacite.
NB – 61	Nearly all grains are angular. Most rocks are fine to medium grained felsic to intermediate intrusive rocks, e.g. granitic to dioritic in composition and grain size. Volcanic grains are andesite
NB – 62	Mix of rounded and angular grains. There are a few grains of quartz. Rocks are mixed intermediate volcanic rocks and felsic intrusives. Intrusive content is minor. There is a rounded grain of muscovite schist.
NB – 63	Mixed rounded and sub - angular grains. Mostly intermediate volcanic rocks. There are a few quartz grains. A single grain of altered andesite (?) with pseudomorph of limonite replacing cubic pyrite.
NB – 64	The rock is difficult to identify. It appears to be strongly hydrothermally altered and may be an altered, crushed granite or perhaps a strongly altered porphyritic felsic lava. There are small vugs with quartz and limonite and the rock is generally limonite stained and whitish to cream - colored on fresh breaks. Recommend petrographic analysis of NB – 64.
NB – 65	The rock is hydrothermally altered coarse grained granite. Some K - spars look fresh and tiny biotites are black and glossy, but plagioclase and many K - spar grains are sericitized and / or argillized. These characteristics may reflect hydrothermal K - spar metosomatism of the granite. This type of rock alteration may accompany the introduction of sulfide mineralization. Recommend petrographic analysis of NB - 65.
NB – 66	The rocks in the sample are large, mostly 1/2" to 1" and larger and are angular. Most are felsic and are both lavas and tuffs. Also a few fragments of granite.
NB – 66A Three rock specimens	One of the rock specimens is a whitish - colored coarse grained granite. It is fresh and unaltered. The other two rock specimens are grayish in color and are felsic lavas. One is probably rhyolite porphyry with visible K - spar phenocrysts. The other appears to be possibly dacitic and is not porphyritic and distinctly grayish in color. It has a 1/8" stringer of quartz along one surface.
NB – 67	All rock fragments are 1/4" to 1+1/4". About 1/3 are granite and the balance are felsic volcanic rocks.
NB – 68	Rock fragments are angular. There is a mix of intermediate flow volcanic rocks and tuffs. There are a few granitic to dioritic grains. Also a single grain of hematite (red) and a grain of andesite with limonite replacing pyrite.
NB – 69	The majority of the grains of rock are angular with a few rounded grains. The rocks are intermediate volcanic rocks, e.g. they are believed to be mostly dacite. There is one grain of granite and a few grains of quartz which are not necessarily vein quartz, but may have come from granite.
NB – 70	The rock grains are of various sizes, from1/8" to 3/4". Most are angular. The rocks are mostly intermediate volcanic rocks, e.g. andesite. There are a couple of grains of fine grained granite. Also several quarts grains. Some rocks contain adhering vein quartz.
NB – 71	The rocks are mostly angular with rare rounded pieces. They are felsic volcanic rocks and include a few grains of granite. There are several quartz grains and three tiny grains of black coal.

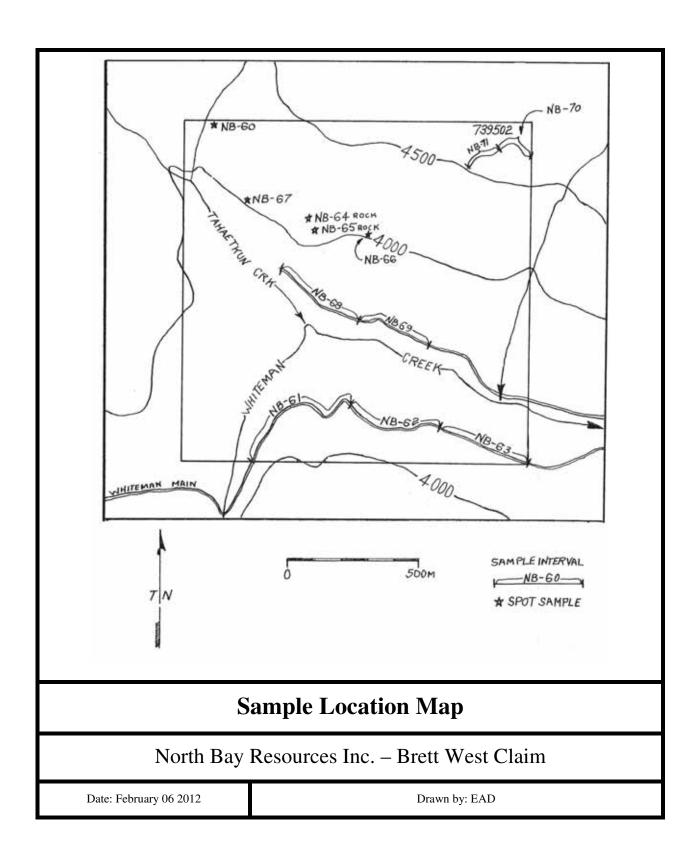


Figure 6 - Table of Assay Results

Sample Number	Au ppm	Type of Sample	UTM Start	UTM Finish
NB - 60	*95.6 ppm in plus fraction of total metallics	Spot sample	E308452 N5568455	
NB - 61	0.097	Traverse	E308497 N5567100	E308914 N5567247
NB - 62	*0.455	Traverse	E308914 N5567247	E309286 N5567180
NB - 63	0.212	Traverse	E309286 N5567180	E309502 N5567061
NB - 64	<0.005	Rock sample	E308635 N5568096	
NB - 65	<0.005	Rock sample	E308645 N5568094	
NB - 66	0.192	Spot sample	E308796 N5567967	
NB - 67	0.035	Spot sample	E308502 N5568171	
NB - 68	0.335	Traverse	E308559 N5567866	E308762 N5567699
NB - 69	0.333	Traverse	E308762 N5567699	E308897 N5567635
NB - 70	0.346	Traverse	E309604 N5568328	E309567 N5568328
NB - 71	0.312	Traverse	E309351 N5568269	E309562 N5568325

^{*} Indicates the high value

Assay Results

NB - 60

In an effort to not have the coarse gold lost during the fire assay a total metallic analysis was performed on NB-60 which produced 95.6 ppm in the plus fraction.

NB - 62

This sample produced the next highest gold value. The sample was taken at the bottom of a north slope on the south side of Whiteman Creek. This area has not seen any obvious investigation

NB - 64 and NB - 65

Theses samples were completely leached out and not surprisingly yielded <0.005 ppm for both.

ICP Interpretation

Mr. Willard D. Tompson P.Geo., letter report of February 24, 2012 after examining the Certificates of ICP Analysis Mr. Tompson states "there were no anomalies in the 30 elements which were tested by ICP analysis".

Discussion of Results

NB-60 offered some very spectacular looking angular gold particles that points to the likelihood of a nearby source. The upslope area from NB-60 needs to be further explored with a systematic sampling program followed by trenching in the most anomalous areas.

NB-62 produced the next highest assay and should be resampled and prospected. Areas upslope and to the south of this sample have never really been adequately explored. This upslope area should be prospected and HMC sampled to determine if a dispersal plume can be developed.

If there is an economic deposit in the above mentioned areas it is likely masked by overburden. Conventional geochemical surveys in the general area of the Brett and surrounding area has not given definitive results but seem to point at widespread spotty and poorly developed gold anomalies. Considering the geological history of the area and the number of possible sources of these spotty results, is in my opinion difficult if not impossible to determine the source of these gold anomalies. Soil / Till HMC creates meaningful target definition in these environments because of its ability to moderate the nugget effect that plagues conventional soil sampling methods.

A previous test run was made on the Brett main shear zone to see in fact if a signature does exist using our HMC method. Our case history test in close proximity to the main shear zone of the Brett deposit yielded definite signatures.

Case Histories

Of relevant interest are two HMC case history signatures of mesothermal / epithermal gold occurrences in the Vernon camp from our previous studies.

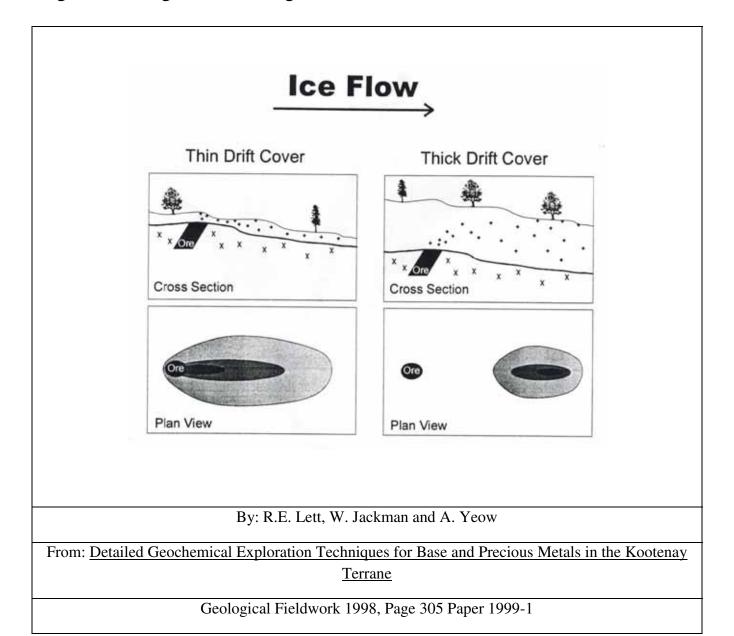
Kalamalka Mine Site

ARIS Report # 21,454 dated April 20 1991 the author conducted a test to see if a geochemical signature exists using Soil / Till HMC on the Kalamalka gold deposit east of Vernon BC. Traverse HMC samples were taken immediately down slope from the main occurrence and yielded high gold values.

It is important to note that these traverse samples from the Kalamalka were about 75kg or twice the size of the ones from the Brett.

- Sample # 1 − 90 ppm
- Sample # 2-1000 ppm (included some soil from right below the dump likely contaminated by mine muck)
- Sample # 7 − 32 ppm
- Sample # 8 23 ppm

Brett Main Shear Zone


Our case history test was conducted in close proximity to the main shear zone of the Brett deposit and produced definite signatures. The results are listed below. These traverse samples weighed about 35kg. or half the weight of the ones from the Kalamalka.

Sample # 1124 (traverse sample): Some very fine particles of gold were seen in the **Re Pan Con.** This sample was taken immediately above the main shear zone and assayed 11.15 ppm in a 30 gram fire assay with a gravimetric finish.

Sample # 1125 (traverse sample): This sample covered a distance of about 75m and was taken 50m downslope from the main shear zone of the Brett deposit. Visible particles of gold could be seen in the **Re Pan Con**. Total metallic analysis was chosen for this sample which yielded 10.05 ppm in the total metallic plus fraction.

Sample # 1126 (traverse sample): Taken along the east side (not downslope) of open cut and assayed 4.28 ppm in a 30 gram fire assay with a gravimetric finish.

Figure 7 – Target Model Diagram

"The average gold content of most soils is low, but the element is enriched in certain types of soils and in a variety of glacial and weathered products in the vicinity of gold – bearing rocks or auriferous deposits" (Boyle, 1979).

Conclusions

The Brett occurrence was initially indicated by highly anomalous HMC samples found in tributaries of Whiteman Creek. The main shear zone on the Brett and the RW vein were both discovered during road construction (ARIS Report # 28,177 page 6) and not while trenching a high definition gold anomaly per se. The often intense exploration of the Whiteman / Bouleau Creek areas in the last 25 years has not been particularly productive to date. Many thousands of dollars have been spent on conventional soil geochemical surveys and the follow up thereof without the discovery of an economically viable deposit of any sort or even a close call to date.

Exposed areas of outcrop have likely been adequately explored, in most cases by some very competent geologists in the past. If there is an economically viable gold deposit in the above mentioned areas it is likely completely masked by overburden.

Although this report was written for the Boul claims to the northeast I think it holds true for the Brett West claims. In <u>ARIS Report # 18,541 dated January 31 1989</u>, K.L. Daughtry and W.R. Gilmour point out that "much of the property is covered by glacial overburden and that follow up of the soil anomalies will require careful attention to the difficulties inherent in exploration on till covered ground". Taking this statement and other factors into consideration there is a strong possibility that most of the widespread, spotty gold anomalies found to date originate from a previously glaciated gold deposit or any number of other models that would explain such a pattern.

This Soil / Till HMC method hopes to bring a new set of useful information to the present data base. The strong case history signatures of the main shear on the Brett and the Kalamalka, increase the possibility of following a Soil / Till HMC lead to a previously undiscovered blind gold deposit and is a reasonable expectation in spite of the widespread spotty gold values. Concentration of our bulk HMC samples tends to reduce the nugget effect and therefore the possibility of being misled by the many problems inherent with gold geochemistry in areas covered by glacial till.

Additional Sample Information

Some **Pan Con** samples only had a small amount of magnetic fraction whereas others had much more. The difference in appearance and proportion of the various fractions, from each sample after processing, holds a lot of information.

The case history samples from the main shear on the Brett produced a distinct buff colored **Plus 300 Micron** fraction. Samples taken near alteration zones on the rest of the North Bay properties produced a distinctly buff colored **Plus 300 Micron** fraction as well. This correlation leads me to propose that the buff colored **Plus 300 Micron** fractions may be a useful indicator of blind alteration zones. Samples NB – 66 and NB – 67 also produced a distinct buff colored **Plus 300 Micron** fraction.

Mr. Willard D. Tompson P. Eng., during a personal discussion on his completion of the megascopic examination of our samples he said he was "impressed with how different the pebbles in the **Sluice Reject** sub samples were from each other in some cases". This would indicate a wide range of information exists. Some of it may be very useful, and our process will move further in that direction as time goes on.

Recommendations

All up slope areas from NB - 60 should be thoroughly covered by HMC sampling. Any alteration zones should be sampled and thin sections should be prepared and studied to try and determine where both alteration and mineralizing events have taken place. The rest of the underexplored interior of the claim should also be HMC sampled.

Rock samples of NB - 64 and NB - 65 have been retained in inventory and should be thin sectioned and have petrographic analysis completed according to Mr. Willard D. Tompson's recommendations.

The purpose of this sampling program is to try and identify a dispersal plume such as that found immediately downslope from the Main Shear on the Brett. Particular attention should be paid to all areas where bedrock is masked by overburden. Assays of **Re Pan Con** obtained in the order of > 4 ppm should be HMC sampled in detail followed by trenching.

Mr. Willard D. Tompson P.Geo., letter report of February 24, 2012. Mr. Tompson recommends that "structural geological interpretation and studies of host rock alteration in conjunction with aerial photograph information may help to identify fracture systems in the andesites which could have functioned as conduits for mineralizing hydrothermal solutions". These recommendations could be very useful in delineating targets for future HMC sampling.

Follow Up Assaying

The Sluice Reject sub sample from NB - 60 and NB - 62 from the megascopy by Mr. Willard D. Tompson P.Geo., should be reexamined and possibly fire assayed.

General Discussion

I first began using Soil / Till HMC about 1981. This process provided a way to explore gold properties when there were little or no funds to pay for assaying. Originally we used to run about 75kgs of soil sample through a sluice box. Over time we concluded that 75kg of sample was just too heavy to handle and we gradually (but reluctantly) reduced the size of our sample down to about 35kgs (the size of our samples today).

Samples sometimes have to be carried a long way out on foot and consequently these samples range from 5 to 10 kgs. They are generally called a "**post - hole**" sample. Post - holeing is an Australian method whereby the sampler digs a hole with a shovel about 0.5 to 1 m deep (depending on conditions) and then takes all of the sample from the very bottom of the hole.

After sluicing the sample, the sluice con was then carefully panned and visually inspected. If we thought we could see minute gold particles and could afford to assay the sample we would. With some samples it became obvious that there was absolutely no gold in the sample and with other samples you could say for sure you were seeing gold particles. Originally, we didn't realize the importance of determining whether the particles were low transport or placer.

In short, every time we conduct a HMC program changes are being made. We try to reduce the enormous amount of labour involved, speed things up, and continue to derive meaningful data, while keeping the process cost effective. Certainly, more improvements can and will be made as we continue to conduct HMC programs. I know that there is more information that we can glean from this process as we spend more time and energy on each fraction.

In the area of the Brett deposit we have established that our **Plus 300 Micron** fraction shows up as a very distinct "Buff" colour. This has also proven to be true throughout the sample area whenever we were near alteration zones. From this I believe we are able to surmise that we can detect alteration zones even when they are completely masked by overburden. I know of no other tool in use at present that can do this. In all environments locating alteration zones is very useful, especially if the alteration zone proves to be gold bearing.

There are many people who specialize in the science of gold particles, glaciation, heavy minerals, etc. Their understanding of certain aspects of this methodology far surpasses my ability to do so. I welcome any comments, questions or concerns that the reader may have about our HMC process. Any further discussion can only help us to continue to improve our methodology.

This HMC process may change the previous idea that soil samples are just gathered and sent to the lab. By processing the soil sample, and separating out the fractions before assaying a whole new level of information is being revealed. I believe the whole story may be hidden in these soils once we have learnt how to read it.

My official duty on this and past programs is that of a data gatherer. The samples in this program were gathered and carefully processed to the very best of my ability. My conclusions and recommendations come from the experiences gained from each of the many HMC projects completed to date.

Statement of Qualifications

I Eugene Allan Dodd of Enderby, British Columbia do hereby certify that:

- I am an experienced prospector having commenced prospecting professionally full time in the North West Territories on February 15 1968.
- I am both President and Chief Exploration Manager for Billiken Gold Ltd. A position I have held for the past year.
- I am both President and Chief Exploration Manager for Trans Arctic Explorations Ltd. A
 position I have held for more than 44 years.
- I was Chief Instrument Operator and then President for Columbia Airborne Geophysical Services Ltd, for 7 years. Specializing in detailed low level combined airborne geophysical surveys in rugged terrain.
- I have successfully completed at UBC, a course titled: Geophysics in Mineral Exploration. The course included detailed technical aspects of most types of geophysical surveys including some practical interpretation.
- I have operated and understand the principles of conducting a wide variety of ground and airborne geophysical surveys. I have experience as both an instrument operator and helper on I.P surveys and S.P. surveys.
- I have gained my experience by conducting numerous exploration programs for a wide variety of mining companies, oil and gas companies and consulting geologists and geophysicists.
- I have supervised projects in the North West Territories, British Columbia, Ontario, Quebec, Labrador, Yukon, Washington, Oregon, Alaska, California, Idaho, Nevada, and Montana.
- For 10 years I owned and operated a contract drilling division in Matheson Ontario. We operated
 two medium depth unitized drill rigs for a variety of mining companies.
- As well as my practical experience I am constantly reading and researching technical aspects of exploration (geological, geophysical and geochemical).
- I am the Author of this report, which is primarily based on my personal observations made while in the field.

Dated at Enderby B.C.

This 24th day of February 2012

Respectfully submitted Eugene A. Dodd, President Billiken Gold Ltd.

BIBLIOGRAPHY

Belik, G.D., M.Sc., <u>Geochemical Report on the Bolo Claims Vernon and Nicola Mining Divisions</u>, <u>British Columbia.</u> For Prebble Resources Inc. ARIS Report # 15,296.

Boyle, R.W., 1979, <u>The Geochemistry of Gold and its Deposits pages 50 to 57.</u> For Energy Mines and Resources Canada. Geological Survey Bulletin 280.

Butrenchuk, S.B., <u>Geochemical Assessment Report on the Heavy Property (Heavy 1 and 2) Whiteman Creek Area Vernon Mining Division, British Columbia.</u> For Chevron Minerals Ltd. ARIS Report # 18,998.

Carter, N.C., P. Eng., <u>Geochemical Report on the Nash Property Vernon Mining Division</u>, <u>British Columbia</u>. For Prosperity Gold Corporation. ARIS Report # 23,473.

Carter, N.C., P. Eng., <u>Geological Report on the Nash Property Vernon Mining Division</u>, <u>British Columbia</u>. For Prosperity Gold Corporation. ARIS Report # 20,226.

Casselman, S.G., <u>1988 – 1989 Exploration Program On the Whiteman Creek Property Nicola and Vernon Mining Division</u>, <u>British Columbia</u>. For Western Canadian Mining Corporation. ARIS Report # 18,884.

Daughtry, and Gilmour, <u>Geochemical Assessment Report on the Boul Property (Boul 1, Boul 4, Boul 5, Boul 1 Fr. Boul 2 Fr. Boul 3 Fr. Boul 4 Fr. Mess Fr. Boul 5 Fr. more Boul Fr. Bouleau Creek Area Vernon Mining Division, British Columbia.</u> For Chevron Minerals Ltd. ARIS Report # 18,541.

Daughtry, K.L., <u>Geochemical & Prospecting Assessment Report on the Gold Star Claim Whiteman Creek Vernon Mining Division</u>, <u>British Columbia.</u> For Brican Resources Ltd. ARIS Report # 12,854.

Dykes, S.M., P.Geo., <u>2004 Exploration Program Assessment Report for 514526 Formerly Brett #5 Claim Brett gold Property Vernon Mining Division, British Columbia.</u> For Running fox Resources Corp. ARIS Report # 28,177.

Fairbairn, D., April 1985, <u>Cutting the Nugget Effect: sacred cows are led to slaughter.</u> Canadian Mining Journal.

Geological Survey Bulletin, 1359, <u>Geology and Mineral Resources of the Northern Part of the North Cascades National Park, Washington.</u> "Mineral Resources". http://www.cr.nps.gov/history/online_books/geology/publications/bul/1359/sec2b.htm

Gilmour, W.R., P.Geo., <u>Geophysical Assessment Report on the Wedge Property (Wedge, Wedge 1-8 Claims) Vernon Mining Division, British Columbia.</u> For K.L. Daughtry. ARIS Report # 26,450.

Gilmour, B., P.Geo., <u>The Use of Heavy Minerals in Mineral Exploration</u>. http://www.discoveryconsultants.com/heavy-minerals.html

Gruenwald, W. B.Sc., <u>Summary Report on the Brett Gold Project Vernon Mining Division.</u> For Explore BC Program and Huntington Resources Inc. ARIS Report # 25,351.

Jenkins, D.M., P.Geo., <u>Geological and Geochemical Report on the Lark1 and Lark2 Mineral Claims</u> Vernon Mining Division, British Columbia. For Commonwealth Gold Corp. ARIS Report # 20,359.

Johnson, J.C.F., F.G.S, 1898, <u>Getting Gold: A Practical Treatise for Prospectors, Miners and Students.</u> Chapter I and II. http://geology.com/publications/getting-gold/

Kelowna Geology Committee <u>Geology of the Kelowna Area and Origin of the Okanagan Valley British</u> Columbia

Kyba, B.W., Daughtry, K.L., <u>Geochemical Assessment Report on the Gold Star Claim Whiteman Creek</u> Vernon Mining Division, British Columbia. For Brican Resources Ltd. ARIS Report # 15,394.

Leishman, D.A., B.SC., <u>Geophysical and Geochemical Report on the Bolo Claims Vernon and Nicola Mining Divisions</u>, <u>British Columbia.</u> For Getchell Resources Inc. ARIS Report # 17,870.

Lett, Jackaman, and Yeow, 1999, <u>Detailed Geochemical Exploration Techniques for Base and Precious Metals in the Kootenay Terrane.</u> British Columbia Geological Survey Branch, Eagle Bay Project.

Lett, Bobrowsky, Cathro, and Yeow, 1998, <u>Geochemical Pathfinders for Massive Sulphide Deposits in The Southern Kootenay Terrane.</u> British Columbia Geological Survey Branch.

Matich, T.R., B.Sc., <u>Appendix Report on Geophysical Surveys on the Nash Group Claims Vernon Mining Division, British Columbia.</u> For Stetson Resource Management Corp. ARIS Report # 19,100.

Morrison, M.S., B.Sc., <u>Reverse Circulation Drilling Assessment Report on the Gold Star Claim Group Whiteman Creek Area Vernon Mining Division, British Columbia.</u> For Doublestar Resources Ltd. ARIS Report # 25,600.

Morrison, M.S., B.Sc., <u>Geochemical Assessment Report on the Gold Star Claim Group Whiteman Creek Area Vernon Mining Division</u>, <u>British Columbia.</u> For Southern Gold Resources Ltd. ARIS Report # 24,634.

Nelles, D.M., B.Sc., <u>Assessment Report on Geological</u>, <u>Prospecting and Geochemical Surveys Nash Claim Group Vernon Mining Division</u>, <u>British Columbia</u>. For Golden Porphyrite LTD. ARIS Report # 12,030.

Paulen, Bobrowsky, Lett, Bichler and Wingerter, 1999, <u>Till Geochemistry in the Kootenay, Slide Mountain and Quesnel Terranes.</u> British Columbia Geological Survey Branch, Eagle Bay Project.

Plouffe, Bednarski, Huscroft and Mccuaig, 2009, <u>Gold Grain Content of Till in the Bonaparte Lake Map Area South Central British Columbia (NTS 92P).</u> Geological Survey of Canada. Open File 6047.

Roed, M.A., PhD., <u>Geological History of Okanagan Valley and Origin of Lake Okanagan, British</u> Columbia. http://www.geoscapes.ca/pov/okhistory.html

Slauenwhite, M., Geologist, <u>Report of Mapping and Prospecting on the Bouleau Property Vernon Mining Division</u>, <u>British Columbia</u>. For Inco Exploration and Technical Services Inc. ARIS Report # 21,877.

Theobald, P.K.JR., May 1956, <u>The Gold Pan as a Quantitative Tool.</u> For the United States Department of the Interior Geological survey.

Wetherill, J.F., B.A., B.Sc., <u>Geological</u>, <u>geophysical</u> and <u>Geochemical Report on the Nash Property Vernon Mining Division</u>, <u>British Columbia</u>. For Prosperity Gold Corporation. ARIS Report # 19,100.

Yorke-Hardy, R.W., A.Sc.T, <u>1989 Exploration Program Prospecting & Sampling on the Moby Claim Group Vernon Mining Division, British Columbia.</u> For Antelope Resources Inc. ARIS Report # 19,089.

Appendix A

Willard D. Tompson, Ltd.

Consulting Geologist
#10-4210 Alexis Park Drive
Vernon, B.C. V1T 6H3
Ph. 250-549-7180 FAX 250-549-7180
e-mail: willtompson@shaw.ca

October 31, 2011

Mr. Gene Dodd Billiken Gold Ltd. 1561 Glenmary Rd. Enderby, B.C, V0E 1V3

Dear Mr. Dodd;

I have read the reports which you provided for me regarding the gold prospects in the Whiteman Creek Area, Vernon Mining Division, B.C. They are;

Morrison, Murray S. 1997; Reverse circulation assessment report, Gold Star Claim Group, Whiteman Creek Area, Vernon Mining Division: Geol. Sur. Branch Assess. Rept. 25,600.

Slauenwhite, Mark, 1991; Report on mapping and prospecting on the Bouleau Property, Vernon Mining Division: Geol. Br. Assess. Rept. 21,877.

Gruenwald, W., 1996; Summary report on the Brett Gold Prospect, Vernon Mining Division, B.C.: Geol. Sur. Assess. Rept. 25,351.

Dykes, Shaun M., 2005; 2004 exploration program assessment report for 514526 formerly Brett #5 claim, Brett gold property, Vernon, B.C.: Geol. Sur. Branch Assess. Rept. 28,177.

In their lists of references both Dykes and Gruenwald refer to a report by Duba in 1988 which indicates that he conducted geological mapping of the Whiteman Creek area. This information would be very useful in trying to plan an exploration program on those gold occurrences. Geologists at Discovery Consultants in Vernon have first hand knowledge regarding the prospects at Whiteman Creek and Bouleau Creek as Duba was a geologist for Discovery Consultants Ltd.

The prospects at Whiteman Creek and Bouleau Creek certainly constitute a viable gold target, as has been shown by promising gold values identified both in prospecting, diamond drilling and in underground work over a period of about 30 years. That's not very long in the history of the life of a mine. The geochemical map by Dykes (2005, p. 16) shows prominent NNE striking gold anomalies, which occur in areas underlain by "older volcanic rocks" over a strike length of some 2,500 meters. Lacking other detailed geological or geochemical knowledge of the prospect area, I suggest this zone is a likely area to be searching for a larger structure which may have concentrated a larger tonnage of gold values.

Willard D. Tompson, P. Geo.

Sincerely yours

Appendix B

Report of Megascopic Examination Sluice Reject Samples, Whiteman Creek-Bouleau Creek Area, Vernon Mining Division, British Columbia

Sample Number	Description of Sample
NB-40	Felsic to intermediate volcanic rocks; 95% are rounded to sub rounded. No sulfides, no limonite. Look like stream deposit.
NB-41	Angular grains. Quartz-sericite rock; white sericite grains. Tan chalcedony grain. Most grains are sub-angular, felsic to intermediate volcanic rock.
NB-42	Trace of magnetite. Nearly all grains are sharp and angular with few rounded grains. All are volcanic rock. Mostly blackish crystalline porphyritic rock which appears to be porphyritic andesite. A few rhyolite grains.
NB-43	All rock fragments are sharp and angular. Mostly \pm 1/8". Rocks are andesite porphyry. Abundant plagioclase phenocrysts. Single calcite cleavage grain. Single muscovite cleavage plate. A few grains are white, sericitized andesite. A few grains of reddish-brown jasperoid. One grain pyrolusite.
NB-48	Virtually all rock fragments are sharp and angular and are about 90% intermediate volcanic rocks, 9% felsic volcanic rocks and 1% mafic volcanic rocks.
NB-45	About half the grains are rounded. Balance contains abundant red hematite and jasperoid grains, up to 15% total. Balance, e.g. 35% are andesite porphyry.
NB-54	Rock grains mostly angular. Rocks are intermediate volcanic rocks, andesitic mostly. Two angular pieces of brown jasperoid. Rocks vary in size from about 1/8" to 1/2". There are a few tiny quartz fragments.
NB-61	Nearly all grains are angular. Most rocks are fine to medium grained felsic to intermediate intrusive rocks, e.g., granitic to dioritic in composition and grain size. Volcanic grains are andesite.
NB-62	Mix of rounded and angular grains. There are a few grains of quartz. Rocks are mixed intermediate volcanic rocks and felsic intrusives. Intrusive content is minor. There is a rounded grain of muscovite schist.
NB-63	Mixed rounded and sub-angular grains. Mostly intermediate volcanic rocks. There are a few quartz grains. A single grain of altered andesite(?) with psuedomorph of limonite replacing cubic pyrite.

- Willard D. Tompson, P. Geo. — Consulting Geologist

Sample Number	Description of Sample
NB-68	Rock fragments are angular. There is a mix of intermediate flow volcanic rocks and tuffs. There are a few granitic to dioritic grains. Also a single grain of hemetite (red) and a grain of andesite with limonite replacing pyrite.
NB-70	The rock grains are of various sizes, from 1/8" to 3/4". Most are angular. The rocks are mostly intermediate volcanic rocks, e.g. andesite. There are a couple of grains of fine grained granite. Also several quartz grains. Some rocks contain adhering vein quartz.
NB-35	Most grains are rounded, but a few are angular to sub-angular. Rocks are mostly dacite with a few andesite grains. There are a few quartz grains and one grain of calcite $\pm 3/8$ ". Most grains are about $1/8$ " to $3/8$ ". Several grains of andesitic tuff
NB-36	Most grains are angular. Very few are rounded. Some small grains of vein quartz. A single bright green chalcedony grain. Minor limonite grains. One 1/2" grain vein quartz with red jasperoid lining a small vug. Most of the rocks are intermediate volcanic flow rocks and a few tuffs.
NB-37	Nearly all the grains are rounded to sub-rounded. Few are angular. Grain size varies from about 1/8" to 3/8". There are a few small rhyolite grains. One grain altered basalt(?). Most grains look like andesite.
NB-38	About 1/4 of the sample grains are rounded and are pebbles. Minor gray-whitish clay adhering to some grains. One grain of black coal. About half the grains are andesite and half are rhyolite.
NB-51	About 1/4 of the grains are rounded to sub-rounded. Some clay adhering to the grains of rock. There are a few grains of vein quartz. Most grains are andesite as well as a few grains of andesite porphyry. There is one grain of coal.
NB-69	The majority of the grains of rock are angular with a few rounded grains. The rocks are intermediate volcanic rocks, e.g. they are believed to be mostly dacite. There is one grain of granite and a few grains of quartz which are not necessarily vein quartz, but may have come from granite.
NB-39	Grains are sub-angular and a few are sub-rounded. Rocks are mostly andesitic to dacitic; a few grains appear to be sericitized(?). Several grains of clay with tiny black rock fragments; may be glacial clay. Clay adheres to some rock grains.

- Willard D. Tompson, P. Geo. -Consulting Geologist

Sample Number	Description of Sample
NB-44	Most grains are large, $\pm 1/4$ "- $1/2$ " and most are sub rounded to round and a few are sub angular. Most appear to be dacitic with a few andesitic. Several grains dacite porphyry with about half content phenocrysts. One small grain quartz with limonite. Significant dacite porphyry with red jasperoid replacing(?) plagioclase. Petrographic problem.
NB-46	Nearly all grains of rock are sharp and angular, excepting rare rounded grains. Rock types vary from andesite to dacite to rhyolite. One grain looks like gabbro(?). A few of the grains display clay alteration.
NB-47	Nearly all of the grains are sharp and angular and only a few are rounded. The rocks are mostly dacite porphyry with abundant, prominent plagioclase phenocrysts. There are a few grains of rhyolite and rare andesite grains.
NB-49	About 1/4 of the grains are rounded to sub-rounded. Nearly all are of felsic volcanic composition with a few grains of coarse grained granite or granodiorite.
NB-50	The grains are mostly angular to sub-angular with a few round to sub-round grains. The rocks are mostly felsic and look to be mostly dacite and dacite porphyry. A few grains are granite. There is minor clay alteration in a few grains.
NB-52	About 1/4 of the grains are rounded. The rocks are mostly felsic and appear to be dacite and rhyolite and some are porphyritic. One grain of basalt.
NB-53	Rock grains are nearly all angular with a few sub-rounded. The rocks are felsic volcanic lavas and some are porphyritic. There are a few grains of tuff. None of the rocks appear to be chemically altered.
NB-55	All rock grains are angular and most are 1/4" to 1/2". The rocks are felsic lavas and a few are andesitic to dacitic dike rocks, e.g. they are coarser grained. There are a few grains of andesite.
NB-56	About 1/4 of the grains are round to sub-round. Of the balance, the rocks are felsic volcanic rocks and coarse grained granite-about 10% are granite. There are a few grains of felsic tuff.
NB-57	About 1/3 of the grains are sub-round. Most have minor clay adhering. Mostly felsic rocks and a few grains of andesite. One grain of pyrolusite(?). A few grains are felsic tuff. There is one quartz grain.

- Willard D. Tompson, P. Ge Consulting Geologist

Sample Number	Description of Sample
NB-58	About 1/4 of the grains are round to sub-round. Most are felsic volcanic lavas and a bit of tuff. A single grain of muscovite rock as from a mica schist. Several grains of quartz and a few small grains that look a bit like granite, but could be of gneissic origin.
NB-60	All rocks are angular and from size 1/8" to 1". Larger than most of the samples. About 1/4 of the grains are granite and granodiorite. The remainder are light colored felsic volcanic lavas and are probably dacite.
NB-66	The rocks in the sample are large, mostly 1'2" to 1" and larger and are angular. Most are felsic and are both lavas and tuffs. Also a few fragments of granite.
NB-67	All rock fragments are 1/4" to 1 1/4". About one third are granite and the balance are felsic volcanic rocks.
NB-71	The rocks are mostly angular with rare rounded pieces. They are felsic volcanic rocks and include a few grains of granite. There are several quartz grains and three tiny grains of black coal.

Willard D. Tompson, P. Geo. — Consulting Geologist

Report on Megascopic Examination Rock Specimens Broken from Outcrop Whiteman Creek-Bouleau Creek Area, Vernon Mining Division, British Columbia

Sample Number	Description of Rock
NB-56A	The rocks are slightly weathered granite. Alteration is weathering only. A fragment of vein quartz is included with the rock specimens and it is stained with limonite and has small vugs with subhedral quartz crystals.
NB-36A	The single rock specimen is slightly vuggy rhyolite porphyry. The rock is fresh and unaltered.
NB-65	The rock is hydrothermally altered coarse grained granite. Some K-spars look fresh and tiny biotites are black and glossy, but plagioclase and many K-spar grains are sericitized and/or argillized. These characteristics may reflect hydrothermal K-spar metasomatism of the granite. This type of rock alteration may accompany the introduction of sulfide mineralization. Recommend petrographic analysis of NB-65.
NB-64	The rock is difficult to identify. It appears to be strongly hydrothermally altered and may be an altered, crushed granite or perhaps a strongly altered porphyritic felsic lava. There are small vugs with quartz and limonite and the rock is generally limonite stained and whitish to cream-colored on fresh breaks. Recommend petrographic analysis of NB-64.
NTD CCA	

NB-66A Three rock specimens

One of the rock specimens is a whitish-colored coarse grained granite. It is fresh and unaltered. The other two rock specimens are grayish in color and are felsic lavas. One is probably rhyolite porphyry with visible K-spar phenocrysts. The other appears to be possibly dacitic and is not porphyritic and distinctly grayish in color. It has a 1/8" stringer of quartz along one surface.

Willard D. Tompson, P. Geo. -Consulting Geologist

Appendix C

Willard D. Tompson, Ltd.

Consulting Geologist
#10-4210 Alexis Park Drive
Vernon, B.C. V1T 6H3
Ph. 250-549-7180 FAX 250-549-7180
e-mail: willtompson@shaw.ca

Feb. 24, 2012

Mr. Gene Dodd Billiken Gold Ltd. 1561 Glenmary Rd. Enderby, B.C. V0E 1V3

Dear Mr. Dodd;

I have read the Geological Branch Assessment Report No. 13,471 by W. Gruenwald, dated January 7, 1985 concerning the geology of the Brett Nos. 1 and 2 mineral claims in the Vernon Mining Division and I have reviewed the assay and ICP results of the samples which you submitted.

Gruenwald described six principal rock units which occur in the district where gold mineralization is known to exist. The oldest are andesites and basalts which are believed to be Upper Triassic in age. These rocks display alteration typical of chloritization and epidotization. They are pre-intrusive in age and could function as host rocks for metallic mineralization, provided hydrothermal solutions were introduced and adequate ("plumbing") fracture systems occured in the volcanic rocks.

A scattered assemblage of green to gray volcaniclastics occur in the northern part of the Brett claims. There is no reported association of these rocks with the known gold occurrences.

Two intrusive rock types occur which are considered to belong to the Okanagan Batholith, a large intrusive complex that lies west of Kalamalka and Okanagan Lakes. It is Jurassic and/or Cretaceous in age and thus post-dates the andesites. Gruenwald describes two distinct rock types;

- Pale green to buff feldspar ± hornblende porphyry. These rocks are thought to be dikes and may contain zones of hydrothermal alteration.
- Dioritic rocks, mostly lacking in hydrothermal alteration and mineralization. Minor pyrite occurs and small pyrite-galena-chalcopyrite veins occur.

A rock unit described as Unit 6 is a hydrothermally altered andesite, a likely host rock for metallic mineralization in this geological environment. The rocks are variously described as pale yellow, limonitic, bleached, epidotized, chloritized and pyritic.

I have examined the Certificates of Analysis of the 36 pan concentrate samples which you submitted for analysis. There were no anomalies in the 30 elements which were tested by ICP analysis.

The samples were analyzed for gold content by AA techniques. Assay values for the 36 pan concentrate samples varied from less than .005 parts per billion to 2,090 parts per billion, with 75 percent of the samples assaying greater than 100 parts per billion. These values may be considered to be anomalous values in this area where gold occurrences are known to exist.

It is established by Gruenwald that Upper Triassic andesites are the host rocks for gold mineralization in the Whiteman Creek area. A reasonable approach for continued exploration in the prospect area should include detailed geological mapping in order to define the position of the andesites with respect to known gold occurrences. Structural geological interpretation and studies of host rock alteration in conjunction with aerial photograph information may help to identify fracture systems in the andesites which could have functioned as conduits for mineralizing hydrothermal solutions. Follow-up geochemical and geophysical surveys would then be employed if geological targets were identified.

Sincerely yours

Willard D. Tompson, P. Geo.

Appendix D

Detailed Cost Breakdown Brett West Claim

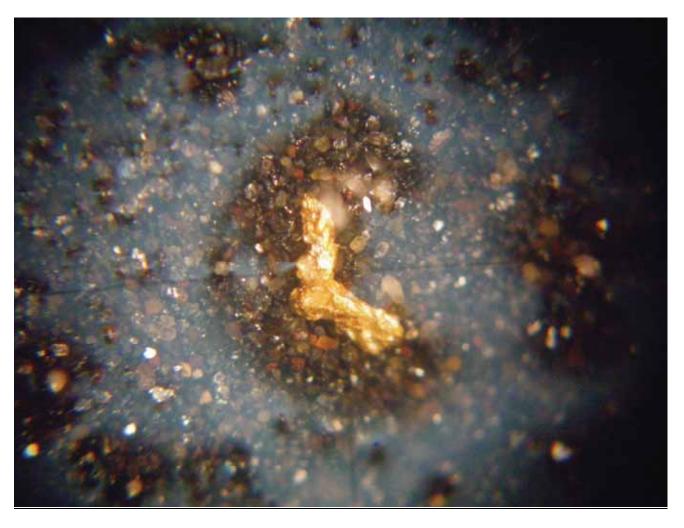
Soil / Till Heavy Metal Concentrating Bouleau Creek Project

Labour

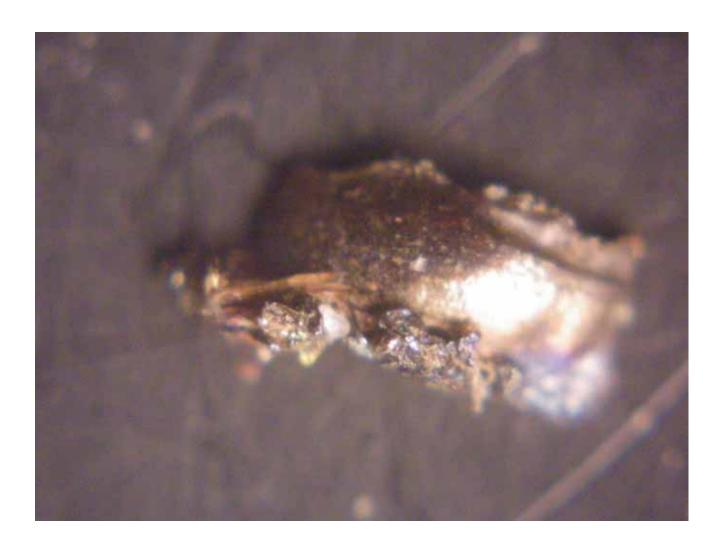
E. Dodd (Supervisor) \$250.00 October 17 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 18 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$2200.00 October 21 2011 E. Dodd (Supervisor) \$2200.00 October 21 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing 143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous Bins, containers, etc. \$155.40 Shipping \$12.00 Total \$5,677.64	October 12 2011	
E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 18 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$250.00 E. Winter (Sampler) \$2200.00 October 21 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$2200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sub total \$1,850.00 Sample Processing \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous Bins, containers, etc. \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included)	E. Dodd (Supervisor)	\$250.00
E. Winter (Sampler) \$200.00 October 18 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$2200.00 October 21 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$250.00 E. Winter (Sampler) \$2200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing \$250.00 / hour \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous Bins, containers, etc. \$155.40 Shipping \$12.00 Total \$5,677.64	October 17 2011	
October 18 2011 \$250.00 E. Winter (Sampler) \$200.00 October 21 2011 \$250.00 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 22 2011 \$250.00 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing \$2,860.00 143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included) \$550.00	E. Dodd (Supervisor)	\$250.00
E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 21 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$250.00 E. Winter (Sampler) \$2200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing \$250.00 / hour \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous Bins, containers, etc. \$155.40 Shipping \$12.00 Total \$5,677.64	E. Winter (Sampler)	\$200.00
E. Winter (Sampler) \$200.00 October 21 2011 E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sub total \$1,850.00 Sample Processing \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous Bins, containers, etc. \$155.40 Shipping \$12.00 Total \$5,677.64	October 18 2011	
October 21 2011 \$250.00 E. Winter (Sampler) \$200.00 October 22 2011 \$250.00 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing \$2,860.00 143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included) \$250.00	E. Dodd (Supervisor)	\$250.00
E. Dodd (Supervisor) \$250.00 E. Winter (Sampler) \$200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing \$143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$500.00 Miscellaneous \$11.00 Shipping \$12.00 Total \$5,677.64	E. Winter (Sampler)	\$200.00
E. Winter (Sampler) \$200.00 October 22 2011 E. Dodd (Supervisor) \$250.00 Sub total \$1,850.00 Sample Processing \$143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64	October 21 2011	
October 22 2011 \$250.00 E. Dodd (Supervisor) Sub total \$1,850.00 Sample Processing \$2,860.00 143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included) \$500.00	E. Dodd (Supervisor)	\$250.00
E. Dodd (Supervisor)	E. Winter (Sampler)	\$200.00
Sub total \$1,850.00 Sample Processing \$2,860.00 143 hours @ \$20.00 / hour \$2,860.00 Willard D. Tompson P.Geo. \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included) \$1,850.00	October 22 2011	
Sample Processing \$2,860.00 Willard D. Tompson P.Geo. \$166.80 Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included) \$2,860.00	E. Dodd (Supervisor)	\$250.00
Miscellaneous S2,860.00 S166.80 S166.80 ICP Interpretation \$11.12 per sample x 12 samples S133.44 S133.44 S2,860.00 S500.00 S500.00 S500.00 S12.00 S12.00 S12.00 S5,677.64 S5,677.64 S5,677.64 S5,677.64 S5,677.64 S5,677.64 S5,677.64 S6,677.64 S6,677.	Sub total	\$1,850.00
Willard D. Tompson P.Geo. Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous Bins, containers, etc. \$155.40 Shipping \$12.00 Total \$5,677.64 (Taxes not included)	Sample Processing	
Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64	143 hours @ \$20.00 / hour	\$2,860.00
Megascopy \$13.90 per sample x 12 samples \$166.80 ICP Interpretation \$11.12 per sample x 12 samples \$133.44 Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64		
ICP Interpretation \$11.12 per sample x 12 samples \$133.44	Willard D. Tompson P.Geo.	
ICP Interpretation \$11.12 per sample x 12 samples \$133.44	Megascopy \$13.90 per sample x 12 samples	\$166.80
Report \$500.00 Miscellaneous \$155.40 Shipping \$12.00 Total \$5,677.64		\$133.44
Miscellaneous \$155.40 Bins, containers, etc. \$12.00 Shipping \$12.00 Total \$5,677.64 (Taxes not included)		
Miscellaneous \$155.40 Bins, containers, etc. \$12.00 Shipping \$12.00 Total \$5,677.64 (Taxes not included)	Renort	\$500.00
Bins, containers, etc. \$155.40 Shipping	<u>керон</u>	Ψ300.00
Bins, containers, etc. \$155.40 Shipping	Misselleness	
Shipping		Φ1.5.7 AΩ
Total \$5,677.64 (Taxes not included)		
(Taxes not included)	** *	
	I otal	\$3,077.04
	(Tayas not included)	
Dated: February 24, 2012	Dateu. Pediaty 24, 2012	

Respectfully submitted Eugene A. Dodd, President Billiken Gold Ltd.

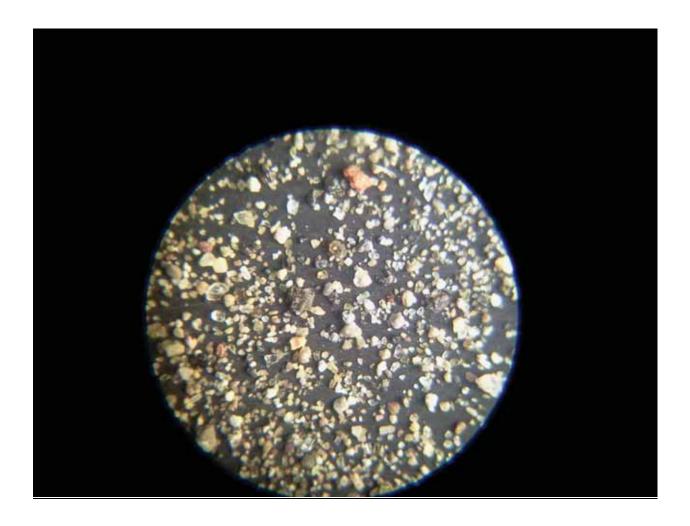
Appendix E


Line up of fractions showing Sluice Reject, Pan Reject, Pan Con, and Soil Samples (at far rear right).

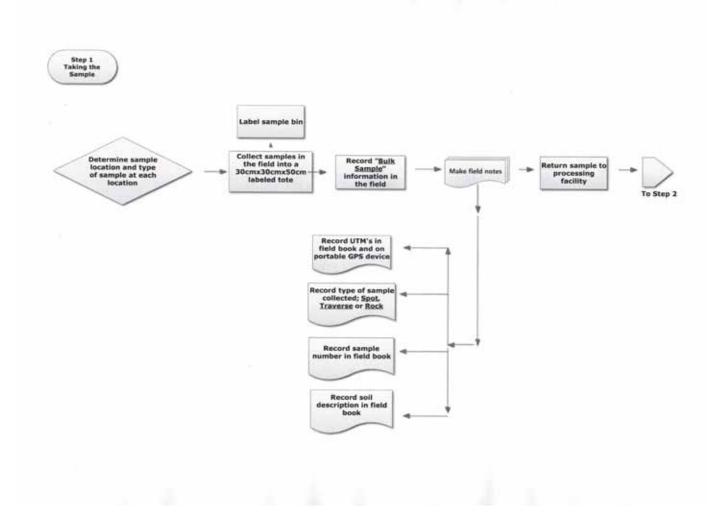

All North Bay fractions and microscopic examination in progress

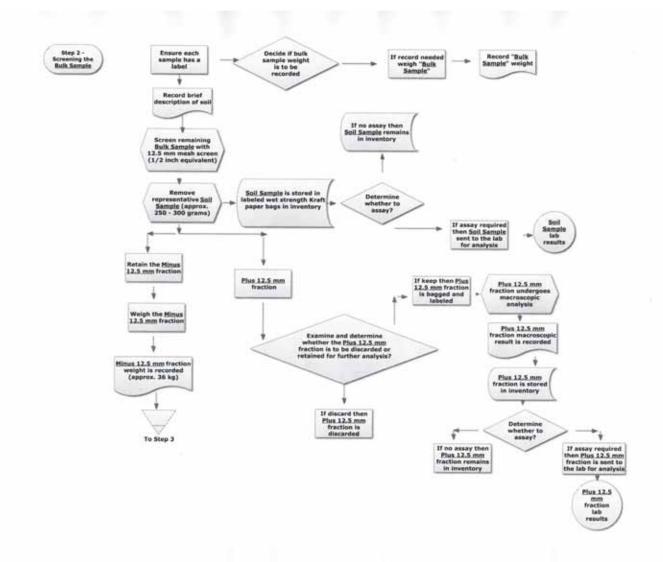

NB – 60 showing all four fractions (**Re Pan Con** in the Vial, **Plus 300Micron** fraction, **Re Pan Reject** fraction, **Pan Con Magnetic** fraction)

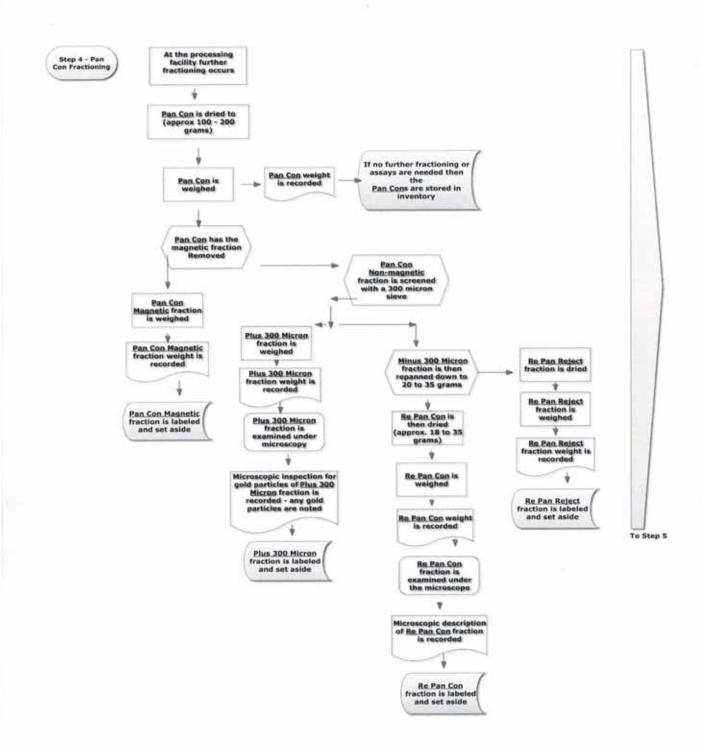
 $\underline{\text{NB}} - 60~\text{Pan Con fraction}$ - pristine boot shaped gold nugget with quartz adhered. Approximate size 195 x 45 microns.

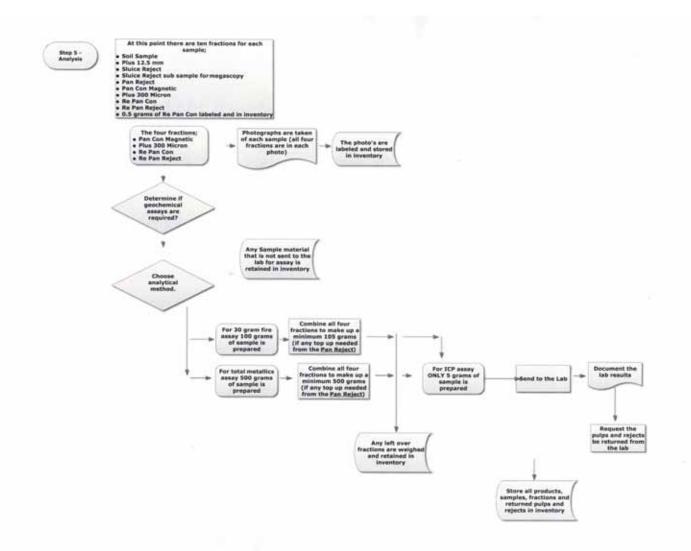

 $\underline{\text{NB}} - 60$ **Pan Con** fraction – Side 1 pristine unidentified metallic nugget. Approximate size 145 x 60 microns.

 $\underline{\text{NB}} - 60$ **Pan Con** fraction – Side 2 of pristine unidentified metallic nugget. Approximate size 145 x 60 microns.




 $\underline{\text{NB}-60}$ **Re Pan Con** fraction -2 semi – angular gold nuggets with quartz adhered. Approximate size 60 microns.


Example of microscope view of insolubles in Plus 300 Micron fraction


Appendix F

Appendix G

Page 1 of 1

Minerals (ALS

BILLING INFORMATION

VA11265555 Sand

Sample Type: Certificate:

Account

Date:

P.O. No.: Project

Quote: Terms:

20-JAN-2012

BILGOL

Due on Receipt

Comments:

2103 Dollarion Hwy North Vancoover 8C V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 WWW.alsglobal.com ALS Canada Ltd.

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3

3			INVOICE NUMBER 2409/43	2403/43
	OTTANIA NI I		ED FOR	TINU
	GUANIIIT	CODE	DESCRIPTION	PRICE
	-	BAT-01	Administration Fee	31.50
	36	LOG-22	Sample Jogin - Rcd w/o BarCode	1.15
	35	PUL-31	Pulverize split to 85% < 75 um	4.10
	-	PUL- 32	Pulverize 1000g to 85% < 75 um	5.90
	35	Au-AA23	Au 30g FA- AA finish	15.30
	-	Au-SCR21	Au Screen Fire Assay - 100 um	15.90
	-	Au- AA25	Ore Grade Au 30g FA AA finish	15.90
	-	Au- AA25D	Ore Grade Au 30g FA AA Dup	15.90
	36	ME-ICP41	35 Element Aqua Regia ICP- AES	7.10
	36	GEO-AR01	Aqua regia digestion	3.50
	-	8AG-01	Bulk Master for Storage	1.20
	2	CRU-31	Fine crushing - 70% < 2mm	2.65
	1.04	CRU-31	Weight Charge (kg) - Fine crushing - 70% < 2mm	0.45
	2	SPL-21	Split sample - riffle splitter	1.80
	1.04	SPL-21	Weight Charge (kg) - Split sample - riffle splitter	0.35
	-	SCR-21	Screen to + 100 um	5.30
				CATALON STATES

41.40 5.90 5.90 5.90 15.90 15.90 15.90 15.90 15.90 12.00 12.00 5.30 5.30

BILLIKEN GOLD LTD ATTN: GENE DODD 561 GLENMARY RD ENDERBY BC VOE 1V3 To:

1,347.73

1,203.33 144.40

SUBTOTAL (CAD) R100938885 HST BC TOTAL PAYABLE (CAD)

Beneficiary Name: ALS Canada Ltd.

Bank:
Royal Bank of Canada
SWIFT: ROYCCAT2
Vancouver, BC, CAN
Address: Vancouver, BC, CAN
Account: 003-00010-1001098
Please send payment info to accounting.canusa@alsglobal.com

Payment may be made by: Cheque or Bank Transfer

2103 Dollarton Hwy North Vancouver BC V7H 0A7 ALS Canada Ltd.

Please Remit Payments To :

Page 60 Brett West.doc

Appendix H

Minerals

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com ALS Canada Ltd.

Page: 1
Finalized Date: 20- JAN- 2012
This copy reported on 23-JAN- 2012
Account: BILGOL

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC V0E 1V3

VA11265555

CERTIFICATE

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% < 2mm
SCR- 21	Screen to - 100 um
SPL-21	Split sample - riffle splitter
8AG-01	Bulk Master for Storage
PUL-31	Pulverize split to 85% < 75 um
PUL-32	Pulverize 1000g to 85% < 75 um

This report is for 36 Sand samples submitted to our lab in Vancouver, BC, Canada on 20-DEC-2011.

P.O. No .: Project

The following have access to data associated with this certificate:

			-1
	ANALYTICAL PROCEDURES		
ALS CODE	DESCRIPTION	INSTRUMENT	
Au-SCR21	Au Screen Fire Assay - 100 um	WST-SIM	
Au-AA25	Ore Grade Au 30g FA AA finish	AAS	
Au-AA25D	Ore Grade Au 30g FA AA Dup	AAS	
ME-ICP41	35 Element Aqua Regia ICP. AES	ICP-AES	
Au- AA23	Au 30g FA- AA finish	AAS	

BILLIKEN GOLD LTD ATTN: GENE DODD 561 GLENMARY RD ENDERBY 8C V0E 1V3 10

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Colin Ramshaw, Vancouver Laboratory Manager

Page 62 Brett West.doc

Page: 2 - A
Total # Pages: 2 (A - C)
Finalized Date: 20- JAN- 2012
Account: BILGOL

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC V0E 1V3

Sample Description Wile 35 A will be a second on the control of the c		2							Ш	Ü	RTIFIC	CERTIFICATE OF ANALYSIS	FANAL	YSIS	VA112	VA11265555	
0.12 0.45 0.45 0.4 1.4 1.08 6 4 0.09 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 <th>Sample Description</th> <th>Method Analyte Units LOR</th> <th>11.75%</th> <th>Au-AA23 Au ppm 0.005</th> <th>Au-SCR21 Au Total ppm 0.05</th> <th>Au-SCR21 Au (+.) F ppm 0.05</th> <th>Au-SCR21 Au () F ppm 0.05</th> <th>Au-SCR21 Au (+) m mg 0.001</th> <th>Au-SCR21 WT. + Fr 9 0.01</th> <th>Au- 5CR21 WT Fr 9 0.1</th> <th>Au- AA25 Au ppm 0.01</th> <th>Au- AA250 Au ppm 0.01</th> <th>ME-ICP41 Ag ppm 0.2</th> <th>ME-ICP41 Al N 0.01</th> <th>ME-ICP41 As ppm 2</th> <th>ME-ICP41 B ppm 10</th> <th>ME-ICPA1 Ea ppm 10</th>	Sample Description	Method Analyte Units LOR	11.75%	Au-AA23 Au ppm 0.005	Au-SCR21 Au Total ppm 0.05	Au-SCR21 Au (+.) F ppm 0.05	Au-SCR21 Au () F ppm 0.05	Au-SCR21 Au (+) m mg 0.001	Au-SCR21 WT. + Fr 9 0.01	Au- 5CR21 WT Fr 9 0.1	Au- AA25 Au ppm 0.01	Au- AA250 Au ppm 0.01	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al N 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICPA1 Ea ppm 10
0.12 0.14 0.16 1.04 10.84 5 40 0.12 0.17 </td <td>ND.35</td> <td></td> <td>0.40</td> <td>3436</td> <td></td>	ND.35		0.40	3436													
0.12 0.017	Ne. 36		2.0	0 10 0									0.4	1,08	o	<10	8
0,014 0,017 0,01	00.02		9 0	0,000									1,4	98.0	9	410	90
0.10 0.2377 0.12 0.3377 0.0 0.5 5 40 0.5 6 40 0.5 4 0.0 <td>N8-37</td> <td>Ī</td> <td>0.12</td> <td>0.377</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>60.2</td> <td>0.63</td> <td>4</td> <td>410</td> <td>100</td>	N8-37	Ī	0.12	0.377									60.2	0.63	4	410	100
0.17 0.00 1220 0.54 <	100		0.10	0.377									0.3	69'0	2	<10	80
0.10 1820 0.10 0.23 0.64 4 <	NB-39		0.12	0.301									9.0	0.55	Q	410	110
0.12 0.023 0.04 0.0	NB-40		0.10	1,820									0.3	0.67	4	<10	110
0.12 0.005 0.01 0.005 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.67 0.7 0.69 0.7 0.69 0.7 0.69	N8-41		0.10	0.223									0.3	0.60	4	410	90
0.12 0.048 0.02 0.04 <t< td=""><td>NB-42</td><td></td><td>0,12</td><td><0.005</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>40.2</td><td>0.67</td><td>0</td><td>010</td><td>200</td></t<>	NB-42		0,12	<0.005									40.2	0.67	0	010	200
0.12 0.131 -0.2 0.73 < c + 0	NB- 43		0.12	0.048									0.3	200	Ç	c10	270
0.12 0.022 0.037 0.4 0.02 0.07 0.0	NB-44		0.12	0.131									<0.2	0.73	Ŷ	410	190
0.10 0.007 0.007 0.007 0.007 0.007 0.007 0.009	NB-45		0.12	0.032									0.2	0.67	<2	<10	190
0.12 0.144 0.12 0.145 0.12 0.145 0.12 0.145 0.12 0.145 0.12 0.589 0.12 0.589 0.12 0.589 0.12 0.589 0.12 0.589 0.12 0.048 0.2 0.19 0.04	NB-46		0,10	0.007									0.0	0.63	0	01.9	240
0.12 0.072 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.044 0.042 0.043 0.042 0.043 0.042 0.043 0.042 0.043 0.042 0.043 0.042 0.043 0.042 0.043 0.042 0.043 0.042 0.043	NB-47		0.12	0.145									<0.5	0.57	0	cto	220
0.12 0.567 0.567 0.57 0.59 0.7 0.59 0.7 0.59 0.7 0.59 0.7 0.59 0.5	NB-48		0.12	0.123									<0.5	0.84	0	440	450
012 0,380 0,12 0,380 0,12 0,380 0,12 0,380 0,12 0,382 0,12 0,48 0,62 3 <10	NB-49		0.12	0.507									20	25.0	, ,	2 0	200
0.12 0.389 0.12 0.389 4	440 50												1.0	200	y	015	200
0.12 0.352 0.14 0.352 0.15 0.354 0.15 0.355 0.15 0.355 0.15 0.355 0.17 0.356 0.18 0.24 0.256 0.19 0.357 0.10 0.455 0.10 0.455 0.11 0.357 0.12 0.355 0.13 0.312 0.12 0.335 0.13 0.345 0.14 0.355 0.15 0	NB-50		0.12	0.369									0.2	0.48	Q	<10	70
0.12 0.0330 0.030 0.030 0.030 0.04 0.03 0.066 0.2 0.10 0.030 0.06 0.2 0.10 0.03 0.068 0.2 0.10 0.03 0.068 0.2 0.10 0.03 0.068 0.2 0.10 0.03 0.08 0.2 0.10 0.03 0.08 0.2 0.10 0.03 0.08 0.2 0.10 0.03 0.08 0.2 0.10 0.03 0.08 0.2 0.10 0.03 0.03 0.03 0.09 0.4 0.10 0.03	NB-51		0.12	0.322									9.0	0.62	n	c10	70
0.12 0.864 0.064 0.064 0.064 0.0 <t< td=""><td>MB-52</td><td></td><td>0.10</td><td>0.030</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.2</td><td>99'0</td><td>7</td><td><10</td><td>8</td></t<>	MB-52		0.10	0.030									0.2	99'0	7	<10	8
0.12 0.256 0.256 0.27 0.66 <2	NB-53		0.12	0,854									2.3	0.60	4	410	160
0.12 0.6407 0.628 -11 1.46 3 <10	NB-54		0.12	0.256									0,3	0.68	5	<10	100
0.12 0.529 0.12 2.09 0.13 2.09 0.14 2.09 0.15 2.09 0.15 2.09 0.15 0.54 0.15 0.54 0.15 0.54 0.15 0.54 0.15 0.54 0.15 0.55 0.24 0.282 2.95 5.27.6 0.25 0.22 0.00 3 0.10 0.10 0.097 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0455 0.10 0.0456 0.10 0.0456 0.11 0.0456 0.12 0.045 0.12 0.045 0.12 0.045 0.12 0.045 0.12 0.045 0.12 0.045 0.13 0.045 0.14 0.045 0.15 0.045 0.15 0.045 0.15 0.045 0.17 0.045 0.18 0.19 0.19 0.19 0.19 0.19 0.11 0.045	NB- 55		0.12	0.407									1.1	1,46	3	<10	110
0.10 0.826 0.10 0.027 0.77 95.6 0.24 0.282 2.95 5.75 0.25 0.22 1.96 4 <10 0.10 0.097 0.77 95.6 0.24 0.282 2.95 5.75 0.25 0.22 1.96 4 <10 0.10 0.097 0.77 95.6 0.24 0.282 2.95 5.75 0.25 0.22 1.09 1.4 <10 0.10 0.045 0.212 0.212 0.74 8 <10 0.10 0.102 0.212 0.005 0.54 0.005 0.54 0.005 0.20 0.74 8 <10 0.10 0.102 0.393 0.10 0.1005 0.20 0.39 0.10 1.00 1.00 0.10 0.10 0.10 0.10 0.1	NB- 56		0.12	0.529									<0.2	1.53	Ç	<10	80
0.12 2.09 0.77 95.6 0.24 0.28 0.25 0.25 0.11 1,00 <2 <10 0.10 0.097 0.007 0.028 0.24 0.286 627.6 0.25 0.02 0.09 14 <10	NB- S7		0.10	0.826									<0.2	1.96	4	<10	8
0.54 0.77 95.6 0.24 0.28 0.25 0.22 0.22 0.22 0.25 0.26 0.56 0.57 0.56 0.56 0.57 0.59 14 <10 0.10 0.455 0.245 0.28 0.28 0.76 0.74 0.76 0.74 0.76 0.7	N8-58		0.12	2.09									1,1	1.08	Ç7	410	8
0.10 0.097	NB- 60		0.58		0.77	95.6	0.24	0.282	2.95	527.6	0.25	0.22	<0.2	0.80	67	<10	150
0.10 0.455 0.74 8 < <10 0.12 0.212 0.74 8 < <10 0.20 0.202 0.70 8 < <10 0.54 <-0.005 0.50 0.70 8 < <10 0.54 <-0.005 0.50 0.50 0.70 0.70 0.70 0.12 0.303 0.12 0.303 0.12 0.304 0.10 0.12 0.303 0.12 0.305 0.12 0.305 0.12 0.30 0.10 0.12 0.303 0.12 0.305 0.12 0.306 0.10 0.10 0.12 0.305 0.12 0.306 0.10 0.10 0.10 0.10 0.12 0.305 0.10 0.10 0.10 0.10 0.10 0.12 0.305 0.10 0.10 0.10 0.10 0.10 0.10 0.12 0.305 0.10 0.10 0.10 0.10 0.10 0.10 0.12 0.305 0.306 0.3	NB-61		0,10	0.097									<0.2	0.99	14	<10	160
0.12 0.212 0.70 6 <10	NB-62		0.10	0,455									<0.2	0.74	80	410	110
0.54 -0.005	NB-63		0.12	0.212									40.2	0.70	9	410	110
0.14 ~0.005 0.2 0.39 21 <10	N8-64		0.50	<0.005									<0.2	0.68	20	<10	100
0.10 0.192 0.64 30 <10 0.12 0.335 <0.13	NB-65		0.54	<0.005									0.2	0.39	21	<10	30
0.12 0.035	N8-66		0.10	0.192									<0.2	0.64	30	<10	780
0.12 0.335 -0.23	N8-67		0.12	0.035									<0.5	0.79	0	410	4.90
0.12 0.312	NB-68		0.12	0.335									500	107	y :	2 5	200
0.12 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312 0.312	NB-60		0.12	0.333									4 6	100	n :	2	000
0.12 0.312 0.312 0.312 0.312 0.310 \$ <10	N8-70		0 12	0.346									20.5	1.28	17	410	299
0.12 0.312 <-0.2 0.70 5 <10	27.00		-	2000									<0.2	0.70	4	×10	100
			0.12	0.312									<0.2	0.70	us	<10	100
	0																

Page 63 Brett West.doc

Page: 2 - B
Total # Pages: 2 (A - C)
Finalized Date: 20- JAN- 2012
Account: BILGOL

Fax: 604 984 0218 www.alsglobal.com

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax:

N.S. Canada Ltd.

TO: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3

ME-ICM11 Mo ppm VA11265555 ME-ION! 866 854 749 950 950 1200 1180 809 723 863 661 651 532 483 483 ŝ M5.104 8. x 8.00 0.43 0.23 0.25 0.28 0.29 0.28 0.32 0.40 0.39 0.39 0.49 0.32 0.26 0.28 0.28 0.26 0.79 1.09 0.55 0.35 0.053 ME-ICP41 ppm 10 CERTIFICATE OF ANALYSIS 20200 22222 22222 88228 ME-ION! 0.10 20.000 0.10 7000 0.00 × × 50 0.09 ME-ICM11 Ppm ppm T T - - T - 0 0 0 0 7 7 7 7 7 V ME.ICH 10 PP 00 00 22225 55555 50000 55555 55585 88222 22222 5 × 5 0.0 23.8 22.4 15.1 11.40 16.1 10.35 13.4 12.40 1.96 0.61 18.5 21.2 21.2 15.3 18.3 17.6 5.59 5.47 7.16 5.16 ģ ME-IO41 Hdd ð ME-ICH1 0 1 32222 3 3 5 5 5 87.88.58 224 24 28 28 24 24 ME ION **Wdd** 2444 ME-ICP41 Cd ppm ppm 0.5 22222 55555 22222 66666 228 348 24178 M6-ICP41 Ca × 0.01 0.42 0.76 0.88 0.49 0.43 0.25 0.47 0.47 0.35 0.57 ME-ICP41 99499 00000 000-0 Bagun ME-ICP41 Be ppm 0.5 0.6 Method Analyte Units LOR Minerals Sample Description

Brett West.doc Page 64

NB-45 NB-45 NB-47 NB-48 NB-49

NB 52 NB 52 NB 53 NB 54 NB 54

NB-35 NB-36 NB-37 NB-39

NB- 55 NB- 57 NB- 57 NB- 60

NB-61 NB-63 NB-63 NB-64 NB-65

NB-66 NB-67 NB-68 NB-69 NB-70

Page: 2 - C
Total # Pages: 2 (A - C)
Finalized Date: 20- JAN- 2012
Account: BILGOL

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

ALS Canada Ltd.

To: BILLIKEN GOLD LTD 561 GLENMARY RD ENDERBY BC VOE 1V3

VA11265555 CERTIFICATE OF ANALYSIS

	Method	ME-ICP41	ME-ICP41	ME-ICM1	ME-ICP41	ME-ICP41	ME-ICM1	ME-IOHI	ME-ICP41	ME-ICP41	ME-ICP41	ME JOHI	ME-ICPAT	ME-ION!	ME-ICP41	ME-ICP41
1000	Units	×	wdd	mdd	e fi	1 25	шоо	MDD W	w 600	000	×	11000	000	, unu	W.	u)
Sample Description	LOR	10.0	7	10	~	0.01	2	-	-	20	10.0	10	0	-	10	2
N8-35		70.0	30	1010	11	<0.01	n	4	22	430	0.32	<10	<10	248	<10	125
N8-36		90.0	15	680	11	<0.01	CV.	n	38	075	0.27	410	<10	159	<10	106
NB-37		90'0	11	099	18	<0.01	40	m	32	<20	0.24	×10	<10	139	<10	97
N8-38		0.04	43	670	22	<0.01	=	n	37	V20	0.27	<10	×10	165	<10	108
N8-39		90.0	16	910	9	<0.01	6	4	z	8	0.39	410	<10	240	<10	137
N8-40		0.04	14	910	92	0.01	s,	02	41	025	0.32	<10	<10	225	<10	233
N8-41		0.03	6	810	12	<0.01	10	n	×	420	0.28	<10	<10	202	410	223
N8-42		90.0	13	2010	46	<0.01	0	4	53	200	0.28	410	410	416	<10	88
N8-43		0.03	11	2980	100	10,0>	Q	4	99	<20	0.27	410	<10	584	×10	125
N8-44		0.04	26	1850	15	<0.01	Å	*	3	<20	0.39	410	<10	858	410	146
N8-45		0.03	29	2230	30	<0.01	4	s0	9	<20	0.41	<10	<10	664	<10	195
N8-46		0.03	18	3040	16	+0,0>	Ÿ	4	65	\$20 \$20	0.35	<10	<10	685	<10	122
NB- 47		0.03	40	3290	16	<0.01	9	4	8	85	0.44	<10	410	153	<10	143
N8-48		90.0	8	2610	22	10.00	4	10	80	\$20	1.13	<10	<10	835	<10	418
NB-49		0.03	28	1580	17	<0.01	64	4	40	<20	0.47	<10	410	627	×10	200
N8-50		0.02	29	1450	12	<0.01	Q	4	33	420	0.51	<10	<10	833	<10	227
NB-51		0.02	28	1270	16	<0,01	N	10	30	<20	0.57	<10	<10	795	<10	223
NB- 52		0.05	21	820	10	<0.01	Q	n	×	420	0.53	×10	×10	629	<10	166
NB- 53		0.04	4	1400	ø	<0.01	Q	т	42	20	0.35	<10	×10	392	<10	118
NB- 54		0.03	30	1820	13	<0.01	ø	4	39	8	0.31	<10	×10	98	<10	129
NB- 55		0.03	41	1440	m	0.09	Q	4	48	<20	0.27	<10	<10	374	<10	107
N8-56		0.04	96	980	Q	20'0	۵	n	35	85	0.20	<10	410	168	<10	81
NB-57		0.04	42	940	Ç	90.0	Q	w	37	420	0.24	<10	410	169	<10	10
NB-58		0.03	25	1070	ů	90'0	Q	n	33	<20	0.21	<10	ot>	235	<10	78
NB-60		0.07	10	1260	ev	0.05	Ç	n	19	Q29	0.18	410	<10	148	<10	67
NB-61		0.02	22	1550	m	0.28	Q	4	257	<20	0.19	<10	<10	270	<10	86
NB-62		0.03	61	1350	N	0.37	A	4	46	<20	0.24	<10	410	385	<10	110
N8-63		0.03	51	1460	2	0.12	٧	4	51	8	0.24	410	410	399	<10	112
NB-64		0.03	m	1110	90	0.03	Q	-	35	20	<0.01	410	×10	10	<10	60
N8-65		<0,01	2	150	47	0.09	64	-	90	20	0.01	410	×10	10	<10	26
NB-66		0.04	43	2540	13	0.13	Q	64	92	420	0.05	c10	<10	09	<10	89
NB-67		0.0	13	1010	ç	0.07	٥	N	44	420	0.21	410	410	171	<10	82
NB-68		0.03	40	1660	40	0.44	ev	n	117	<20	0.17	<10	410	224	<10	87
NB-69		0.03	24	1600	*	0,35	A	п	82	<20	0.17	410	410	239	<10	93
NB-70		0.03	72	1000	ç	0.05	۵	N	37	250	0.23	410	<10	294	<10	96
NB-71		0.03	17	1050	4	0.04	Q	2	35	420	0.30	<10	<10	371	<10	126
100000																

Page 65 Brett West.doc

Appendix I

VA11265555 - Finalized					
CLIENT : "BILGOL - Billiken Gold Ltd"					
of SAMPLES : 36		_			
DATE RECEIVED : 2011-12-20 DATE FINALIZED :					
2012-01-20					
2012 01 10		Au-AA23	Au-SCR21	Au-SCR21	Au-SCR21
	+	nu-nnes	Au Total	Au-SCR21	Au-SCR21
		1	(+)(-)	Au (+)	Au (-)
	SAMPLE	Au	Combined	Fraction	Fraction
	DESCRIPTION				
	NB-35	ppm 0.475	ppm	ppm	ppm
	NB-36	0.473		-	
	NB-37	0.558		_	
	NB-38	0.177			_
					_
	NB-39	0.301			_
	NB-40	1.82			
	NB-41	0.223			
	NB-42	<0.005			
	NB-43	0.048			
	NB-44	0.131			
	NB-45	0.032			
	NB-46	0.007			
	NB-47	0.145			
	NB-48	0.123			
	NB-49	0.507			
	NB-50	0.369			
	NB-51	0.322			
	NB-52	0.03			
	NB-53	0.864			
	NB-54	0.256			
	NB-55	0.407			
	NB-56	0.529			
	NB-57	0.826			
	NB-58	2.09			
	NB-60		0.77	95.6	0.2
	NB-61	0.097			
	NB-62	0.455			
	NB-63	0.212			
	NB-64	<0.005			
	NB-65	<0.005			
	NB-66	0.192			
	NB-67	0.035			
	NB-68	0.335			
	NB-69	0.333			
	NB-70	0.346	- 3		
	NB-71	0.312		0	
		li e			
			- N		

Page 1 VA11265555 NB Results from ALS sent jan 23 2012

	-							
	Au-SCR21	Au-SCR21	Au-SCR21	Au-AA25	Au-AA25D	ME-ICP41	ME-ICP41	ME-ICP41
		MET	MIT For					
SAMPLE	Au (+) mg	WT. + Frac Entire	WT Frac Entire	Au	Au	Δœ	Al	As
DESCRIPTION	Au (+) mg			ppm	ppm	Ag ppm	%	ppm
NB-35	mg	g	g	ppiii	ppiii	0.4		
NB-36				_		1.4	-	
NB-37	_					<0.2	0.63	
NB-38	1		-	_		0.3		
NB-39	+	_			-	0.4		
NB-40	+	_		_	_	0.3		
NB-41						0.3		
NB-42	_					<0.2	0.67	
NB-42 NB-43	1					0.3		
NB-44	+					<0.2	0.73	
NB-45			-			0.2		
NB-45	_					0.2		
NB-47						<0.2	0.57	
NB-48	-					<0.2	0.84	
NB-49	-	_	_	_	_	0.7	-	
NB-50	_	_	-			0.7		
NB-50 NB-51	-		_	_		0.4		-2
	_	_	-	_		0.2		
NB-52	-		_	_				
NB-53					-	2.3		
NB-54						0.3		
NB-55	-		-			1.1		-2
NB-56					-	<0.2	1.53 1.96	CONTRACTOR OF THE PARTY OF THE
NB-57	-		_	-		<0.2		
NB-58	0.202	3.05	527.6	0.25	0.22	1.1	•	
NB-60	0.282	2.95	527.6	0.25	0.22	<0.2	0.8	1
NB-61						<0.2	0.99	1
NB-62	-		-		_	<0.2	0.74	
NB-63	+					<0.2	0.7	-
NB-64	-	_				<0.2	0.68	20
NB-65	1					0.2		2
NB-66	_					<0.2	0.64	30
NB-67	-					<0.2	0.79	
NB-68						<0.2	1.07	
NB-69	-					<0.2	1.28	1
NB-70							0.7	
NB-71	1					<0.2	0.7	
		3						

Page 2 VA11265555 NB Results from ALS sent jan 23 2012

		1004	*** 100**					145 16044
	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	В	Ва	Be	Bi	Ca	Cd	Co	Cr
DESCRIPTION	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
NB-35	<10	90	0.6			<0.5	11	12
NB-36	<10	100	0.6			<0.5	8	50
NB-37	<10		<0.5	2		<0.5	9	2
NB-38	<10		<0.5	<2		<0.5	9	3.
NB-39	<10		<0.5	<2		<0.5	12	35
NB-40	<10	110	0.5	<2		<0.5	11	4
NB-41	<10	60	0.5			<0.5	7	40
NB-42	<10		<0.5	<2	-	<0.5	17	8:
NB-43	<10		<0.5	<2		<0.5	19	104
NB-44	<10		<0.5	<2		<0.5	22	147
NB-45	<10		<0.5	<2		<0.5	26	16
NB-46	<10	10000000	<0.5	<2	100000000000000000000000000000000000000	<0.5	21	125
NB-47	<10		<0.5	<2		<0.5	21	120
NB-48	<10	150	0.6	4		<0.5	21	330
NB-49	<10		<0.5	<2		<0.5	25	158
NB-50	<10		<0.5	<2		<0.5	30	183
NB-51	<10	-	<0.5	<2	- white	<0.5	30	170
NB-52	<10		<0.5	<2		<0.5	21	102
NB-53	<10		<0.5	2		<0.5	17	84
	<10		<0.5	2		<0.5	23	147
NB-54		110						
NB-55	<10	-	0.6		0.5	2.6	26 15	116
NB-56	<10 <10	90	<0.5	<2		1.1	18	68
NB-57				3				
NB-58	<10		<0.5	3		1.7	17	35
NB-60	<10		<0.5	2		1.1	11	124
NB-61	<10	160	1			2.5	25	
NB-62	<10	110	0.7	4		3.4	31	189
NB-63	<10	110	0.7	3		2.8	26	198
NB-64	<10		<0.5	3		<0.5	2	
NB-65	<10	-	<0.5	3		CONTRACTOR OF THE PARTY OF THE	1	
NB-66	<10	780	0.7	3	0.57	1.2	15	15
NB-67	<10		<0.5	2		1.1	12	
NB-68	<10	630		3	0.64	2.5		
NB-69	<10	660						
NB-70	<10		<0.5	2				
NB-71	<10	100	0.5	4	0.33	2.8	21	7:

Page 3 VA11265555 NB Results from ALS sent jan 23 2012

	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	Cu	Fe	Ga	Hg	K	La	Mg	Mn
DESCRIPTION	ppm	%	ppm	ppm	%	ppm	%	ppm
NB-35	12	6.17	10	<1	0.13	30	0.43	69
NB-36	21	4.48	-	<1	0.14	30	0.3	62
NB-37	10		<10	<1	0.1	30	0.23	68
NB-38	42	5.01	<10	<1	0.1	50	0.25	58
NB-39	14	7.03		<1	0.08	60	0.28	96
NB-40	11	7.7		<1	0.12	50	0.29	86
NB-41	11	8.38		<1	0.13	90	0.19	95
NB-42	7	12.35		<1	0.12	50	0.28	745
NB-43	6	19.2	10		0.16	60	0.32	950
NB-44	9	15.6		<1	0.13	40	0.4	1050
NB-45	10	18.6		<1	0.1	50	0.39	1200
NB-46	8	21.2		<1	0.14	50	0.36	91
NB-47	6	15.3	10	1		70	0.39	1170
NB-48	9	18.3	20	1	0.12	50	0.49	1980
NB-49	11	17.6		<1	0.06	30	0.32	1060
NB-50	10	23.8	20	1		30	0.26	1200
NB-51 NB-52	- Company of the Comp	15.1		<1	0.04	30	0.26	1180
NB-52 NB-53	8			<1	0.07	20	0.28	809
71-21-1-1-1	9	11.4		<1	0.1	40	0.26	723
NB-54 NB-55	7	16.1		<1	0.08	40	0.45	863
NB-55	7	10.6 5.59		<1	0.09	30	0.85	661
NB-57	7			No. of Contract of	0.11	10	0.79	551
NB-58	11	5.47 7.16	10	<1	0.1	10 20	1.09	532
NB-60	12	5.16		<1	0.08	30	0.55	493
NB-61	11	10.35		<1	0.16		0.35	437
NB-62	12	13.4		<1	0.11	20	0.53	566
NB-63	7	12.4	10	1	0.08	30	0.91	721
NB-64	6	1.96		<1	0.03	90	0.72	53
NB-65	1	0.61		<1	0.21	70	0.03	73
NB-66	8	4.61	<10	<1	0.21	70	0.11	870
NB-67	5	5.49		<1	0.11	20	0.18	400
NB-68	8	9.81		<1	0.11	20	0.39	
NB-69	8	8.99		<1	0.18	20	0.53	
NB-70	4	9.38		<1	0.09	20	0.24	514
NB-71	4	11.55	10	<1	0.08	30	0.23	586

Page 4 VA11265555 NB Results from ALS sent jan 23 2012

				1				
	ME-ICP41							
SAMPLE	Мо	Na	Ni	Р	Pb	s	Sb	Sc
DESCRIPTION	ppm	%	ppm	ppm	ppm	%	ppm	ppm
NB-35	2	0.07	30	1010	11	<0.01	3	1
NB-36	3		15	680	11	<0.01	2	
NB-37	2	0.04	11	660	18	<0.01	5	
NB-38	3	0.04	13	670	22	<0.01	11	
NB-39	1	0.05	16	910	16	<0.01	3	
NB-40	2	0.04	14	910	20	0.01	5	
NB-41	2		9	810	26	<0.01	10	
NB-42	2	0.04	13	2010	46	<0.01	3	
NB-43	2	0.03	11	2980		<0.01	<2	
NB-44	2	0.04	26	1850	15	< 0.01	<2	
NB-45	2	0.03	29	2230	20	<0.01	<2	
NB-46	3	0.03	18	3040	16	< 0.01	<2	
NB-47	. 2	0.03	18	3290	16	< 0.01	5	
NB-48	1	0.04	56	2610	22	< 0.01	4	
NB-49	2	0.03	28	1580	17	< 0.01	2	
NB-50	3	0.02	29			< 0.01	<2	
NB-51	3	0.02	26			<0.01	2	
NB-52	2		21	520		< 0.01	<2	
NB-53	2	0.04	14		9	<0.01	<2	
NB-54	2	0.03	30			< 0.01	<2	
NB-55	1	-	41	1440	3	0.09		
NB-56	1	0.04	36			0.07		
NB-57	1	0.04	42	940		0.08		
NB-58	1	0.03	25	1070		0.05		
NB-60	1	0.07	10		2	0.05		
NB-61	2	0.02	22	1550	9	0.28		- 1
NB-62	1	0.03	61	1350	2	0.37		
NB-63	1	0.03	51	1460	2	0.12		- 3
NB-64	2	0.03	3	1110	18	0.03	_	
NB-65		<0.01	2	150	17	0.09	2	
NB-66	4	0.04	13	2540	13	0.13		
NB-67	1	0.04	13			0.13		
NB-68	2	0.03	19			0.44		
NB-69	1	0.03	24			0.35		
NB-70	1	0.03	14			0.05		
NB-71	1	0.03	17	1050		0.04		

Page 5 VA11265555 NB Results from ALS sent jan 23 2012

	-							-
	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
SAMPLE	Sr	Th	Ti	П	U	v	w	Zn
DESCRIPTION	ppm	ppm:	%	ppm	ppm	ppm	ppm	ppm
NB-35		<20	0.32	<10	<10		<10	12
NB-36	38	<20	0.27	<10	<10	159	<10	10
NB-37	32	<20	0.24	<10	<10	139	<10	9
NB-38	37	<20	0.27	<10	<10	165	<10	100
NB-39	34	<20	0.39	<10	<10	240	<10	13
NB-40	41	<20	0.32	<10	<10	225	<10	23
NB-41	34			<10	<10		<10	22
NB-42	53		0.28		<10		<10	8
NB-43	65		0.27		<10		<10	12
NB-44	63		0.39		<10		<10	140
NB-45	60	-	-	<10	<10		<10	19
NB-46	59		0.35	- Control Control	<10		<10	12
NB-47		<20		<10	<10		<10	14
NB-48	90			<10	<10		<10	418
NB-49	40		0.47		<10		<10	200
NB-50		anning passes	0.51		<10		<10	22
NB-51	30		0.57	Contract Con	<10		<10	22
NB-52		<20	0.53		<10		<10	160
NB-53	42		0.35		<10		<10	111
NB-54	39		0.33		<10		<10	129
	46		0.31		<10		<10	10
NB-55	35	<20	-	<10	<10		<10	8:
NB-56	37		0.24		100000		<10	
NB-57		<20		-	<10			84
NB-58	33	<20	0.21		<10		<10	78
NB-60	61	<20	0.18		<10		<10	6
NB-61	57	<20	0.19	-	<10		<10	98
NB-62			0.24		<10		<10	110
NB-63	51		0.24		<10		<10	111
NB-64	35		<0.01	<10	<10	8	<10	-
NB-65	18	20		<10	<10		<10	20
NB-66	92		0.05		<10		<10	89
NB-67		<20	0.21		<10		<10	83
NB-68		<20	0.17		<10		<10	8
NB-69		<20	0.17		<10		<10	93
NB-70		<20		<10	<10		<10	98
NB-71	35	<20	0.3	<10	<10	371	<10	120

Page 6 VA11265555 NB Results from ALS sent jan 23 2012

Appendix J

Fire Assay Procedure

Au-SCR21

Precious Metals Analysis - Screen Metallics Gold, Double Minus

Sample Decomposition:

Fire Assay Fusion (FA-FUS05)

Analytical Method:

Gravimetric

The sample pulp (1000 g) is passed through a 100 m (Tyler 150 mesh) stainless steel screen. Any material remaining on the screen (+) 100 m is retained and analyzed in its entirety by fire assay with gravimetric finish and reported as the Au (+) fraction. The material passing through the screen () 100 m fraction) is homogenized and two sub-samples are analyzed by fire assay with AAS finish (AuAA25 and AuAA25D). The average of the two AAS results is taken and reported as the Au (-) fraction result. All three values are used in calculating the combined gold content of the plus and minus fractions.

The gold values for both the (+) 100 and (-) 100 micron fractions are reported together with the weight of each fraction as well as the calculated total gold content of the sample.

Calculations:

$$Au^-avg(ppm) = \frac{Au^-(1) + Au^-(2)}{2}$$

$$\label{eq:auTotal(ppm)} \begin{aligned} \text{AuTotal(ppm)} &= \frac{(\text{Au}^-\text{avg}(\text{ppm}) \times \text{Wt.Minus}(\text{g})) + (\text{Au}^+(\text{ppm}) \times \text{Wt.Plus}(\text{g}))}{(\text{Wt.Minus}(\text{g}) + \text{Wt.Plus}(\text{g}))} \end{aligned}$$

Revision 05 03 07, 2009

RIGHT SOLUTIONS RIGHT PARTNER

www.alsglobal.com

Fire Assay Procedure

Determination Reported	Description	Units	Lower Limit	Upper Limit	
Au Total (+)(-) Combined	Total gold content of sample as determined by metallics calculation above.	ppm	0.05		
Au (+) Fraction	Gold content of plus fraction determined by Au- GRA21.		0.05	100,000	
Au (-) Fraction	Gold content of minus fraction. Reported as average of two subsamples.	ppm	0.05	1000	
Au-AA25	Gold content of first minus fraction subsample.	ppm	0.05	1000	
Au-AA25D Gold content of second minus fraction subsamp		ppm	0.05	1000	
Au (+) mg	u (+) mg Weight of gold in plus fraction.		0.001	1000	
WT. (+) Fraction Entire			0.01	1000	
WT. (-) Fraction Entire	Weight of minus fraction.	g	0.1	100,000	

Revision 05.03

RIGHT SOLUTIONS RIGHT PARTNER

www.alsglobal.com